Home
Class 12
MATHS
If |(1+sin^2 theta,sin^2 theta,sin^2 the...

If `|(1+sin^2 theta,sin^2 theta,sin^2 theta),(cos^2 theta,1+cos^2 theta,cos^2 theta),(4sin 4 theta,4sin4theta,1+4sin4theta)|=0,` then ...`sin 4theta` equal to ....

A

`1//2`

B

1

C

`-1//2`

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant of the given matrix and set it equal to zero. The matrix is: \[ \begin{pmatrix} 1 + \sin^2 \theta & \sin^2 \theta & \sin^2 \theta \\ \cos^2 \theta & 1 + \cos^2 \theta & \cos^2 \theta \\ 4 \sin 4\theta & 4 \sin 4\theta & 1 + 4 \sin 4\theta \end{pmatrix} \] ### Step 1: Calculate the determinant We can use the property of determinants that allows us to perform column operations without changing the value of the determinant. We will perform the following operations: 1. \( C_1 \leftarrow C_1 - C_2 \) 2. \( C_2 \leftarrow C_2 - C_3 \) This gives us: \[ \begin{pmatrix} 1 + \sin^2 \theta - \sin^2 \theta & \sin^2 \theta - \sin^2 \theta & \sin^2 \theta \\ \cos^2 \theta - \cos^2 \theta & 1 + \cos^2 \theta - \cos^2 \theta & \cos^2 \theta \\ 4 \sin 4\theta - 4 \sin 4\theta & 4 \sin 4\theta - (1 + 4 \sin 4\theta) & 1 + 4 \sin 4\theta \end{pmatrix} \] This simplifies to: \[ \begin{pmatrix} 1 & 0 & \sin^2 \theta \\ 0 & 1 & \cos^2 \theta \\ 0 & -1 & 1 + 4 \sin 4\theta \end{pmatrix} \] ### Step 2: Calculate the new determinant Now, we can calculate the determinant of the new matrix: \[ \text{Det} = 1 \cdot \begin{vmatrix} 1 & \sin^2 \theta \\ -1 & 1 + 4 \sin 4\theta \end{vmatrix} \] Calculating this 2x2 determinant: \[ = 1 \cdot (1 \cdot (1 + 4 \sin 4\theta) - (-1) \cdot \sin^2 \theta) = 1 + 4 \sin 4\theta + \sin^2 \theta \] ### Step 3: Set the determinant to zero Now, we set the determinant equal to zero: \[ 1 + 4 \sin 4\theta + \sin^2 \theta = 0 \] ### Step 4: Solve for \( \sin 4\theta \) Rearranging the equation gives: \[ 4 \sin 4\theta = -1 - \sin^2 \theta \] Now, we can express \( \sin 4\theta \): \[ \sin 4\theta = \frac{-1 - \sin^2 \theta}{4} \] ### Step 5: Find the value of \( \sin 4\theta \) To find a specific value, we can assume \( \sin^2 \theta = 0 \) (which corresponds to \( \theta = 0 \) or \( \theta = \pi \)): \[ \sin 4\theta = \frac{-1 - 0}{4} = -\frac{1}{4} \] Thus, the final answer is: \[ \sin 4\theta = -\frac{1}{4} \]

To solve the problem, we need to evaluate the determinant of the given matrix and set it equal to zero. The matrix is: \[ \begin{pmatrix} 1 + \sin^2 \theta & \sin^2 \theta & \sin^2 \theta \\ \cos^2 \theta & 1 + \cos^2 \theta & \cos^2 \theta \\ 4 \sin 4\theta & 4 \sin 4\theta & 1 + 4 \sin 4\theta \end{pmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST -14

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST 11 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION - 2)|4 Videos

Similar Questions

Explore conceptually related problems

sin^(3)theta + sin theta - sin theta cos^(2)theta =

(1+sin 2theta+cos 2theta)/(1+sin2 theta-cos 2 theta) =

If sintheta+sin^2theta=1 , prove that cos^2theta+cos^4theta=1

1 + (cos 2 theta + cos 6 theta)/(cos 4 theta) = (sin 3 theta)/(sin theta).

Prove that 1+cos^2 2theta=2(cos^4theta+sin^4theta)

(sin theta + sin 2 theta)/( 1 + cos theta + cos 2 theta) = tan theta.

Prove that : sin theta cos^3 theta - cos theta sin^3 theta = 1/4 sin4theta .

Prove that: 1+cos^2 2theta=2(cos^4theta+sin^4theta)

If sintheta+sin^2theta+sin^3theta=1, then prove that cos^6theta-4cos^4theta+8cos^2theta=4

(1+sin2theta+cos2theta)/(1+sin2theta-cos2theta)=?

VMC MODULES ENGLISH-JEE MAIN REVISION TEST -17 (2020)-MATHEMATICS
  1. For A=133^(@), 2cos\ A/2is equal to

    Text Solution

    |

  2. Let S be the set of all real numbers and Let R be a relations on s...

    Text Solution

    |

  3. Negation of the conditional, ..If it rains, I shall go to school.. is:

    Text Solution

    |

  4. The value of lambda, for which the line 2x - (8)/(3) lambda y =- 3 is ...

    Text Solution

    |

  5. If |(1+sin^2 theta,sin^2 theta,sin^2 theta),(cos^2 theta,1+cos^2 theta...

    Text Solution

    |

  6. The product of n consecutive natural numbers is always divisible by

    Text Solution

    |

  7. In a triangle ABC, if sin A sin B= (ab)/(c^(2)), then the triangle is ...

    Text Solution

    |

  8. The area enclosed by the curve y=sinx+cosxa n dy=|cosx-sinx| over the ...

    Text Solution

    |

  9. Let f(x)={{:(,x^(n)sin\ (1)/(x),x ne 0),(,0,x=0):} Then f(x) is contin...

    Text Solution

    |

  10. Solve: {(xy)cos(xy)+sin(xy)}dx+x^2cos(xy)dy=0

    Text Solution

    |

  11. If veca,vecb and vecc are non coplanar and unit vectors such that veca...

    Text Solution

    |

  12. the image of the point (-1,3,4) in the plane x-2y=0 a.(-(17)/(3),(19)/...

    Text Solution

    |

  13. If the letters of the word SACHIN are arranged in all possible ways...

    Text Solution

    |

  14. If H(1) and H(2) are two harmonic means between two positive numbers a...

    Text Solution

    |

  15. A point P moves in such a way that the ratio of its distance from two ...

    Text Solution

    |

  16. If the shortest distance between the lines (x-3)/(3)=(y-8)/(-1)=(z-3)/...

    Text Solution

    |

  17. The probability of a bomb hitting a bridge is 1/2 and two direct hits ...

    Text Solution

    |

  18. Find the minimum value of |x|+|x+1/2|+|x-3|+|x-5/2|dot

    Text Solution

    |

  19. If the slope of one of the lines represented by ax^(2)+2hxy+by^(2)=0 ...

    Text Solution

    |

  20. The acute angle between F(1)(x)=int(2)^(x) (2t-5)dt and F(2)(x)=int(...

    Text Solution

    |