Home
Class 12
MATHS
If |(1+sin^2 theta,sin^2 theta,sin^2 the...

If `|(1+sin^2 theta,sin^2 theta,sin^2 theta),(cos^2 theta,1+cos^2 theta,cos^2 theta),(4sin 4 theta,4sin4theta,1+4sin4theta)|=0,` then ...`sin 4theta` equal to ....

A

`1//2`

B

1

C

`-1//2`

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant of the given matrix and set it equal to zero. The matrix is: \[ \begin{pmatrix} 1 + \sin^2 \theta & \sin^2 \theta & \sin^2 \theta \\ \cos^2 \theta & 1 + \cos^2 \theta & \cos^2 \theta \\ 4 \sin 4\theta & 4 \sin 4\theta & 1 + 4 \sin 4\theta \end{pmatrix} \] ### Step 1: Calculate the determinant We can use the property of determinants that allows us to perform column operations without changing the value of the determinant. We will perform the following operations: 1. \( C_1 \leftarrow C_1 - C_2 \) 2. \( C_2 \leftarrow C_2 - C_3 \) This gives us: \[ \begin{pmatrix} 1 + \sin^2 \theta - \sin^2 \theta & \sin^2 \theta - \sin^2 \theta & \sin^2 \theta \\ \cos^2 \theta - \cos^2 \theta & 1 + \cos^2 \theta - \cos^2 \theta & \cos^2 \theta \\ 4 \sin 4\theta - 4 \sin 4\theta & 4 \sin 4\theta - (1 + 4 \sin 4\theta) & 1 + 4 \sin 4\theta \end{pmatrix} \] This simplifies to: \[ \begin{pmatrix} 1 & 0 & \sin^2 \theta \\ 0 & 1 & \cos^2 \theta \\ 0 & -1 & 1 + 4 \sin 4\theta \end{pmatrix} \] ### Step 2: Calculate the new determinant Now, we can calculate the determinant of the new matrix: \[ \text{Det} = 1 \cdot \begin{vmatrix} 1 & \sin^2 \theta \\ -1 & 1 + 4 \sin 4\theta \end{vmatrix} \] Calculating this 2x2 determinant: \[ = 1 \cdot (1 \cdot (1 + 4 \sin 4\theta) - (-1) \cdot \sin^2 \theta) = 1 + 4 \sin 4\theta + \sin^2 \theta \] ### Step 3: Set the determinant to zero Now, we set the determinant equal to zero: \[ 1 + 4 \sin 4\theta + \sin^2 \theta = 0 \] ### Step 4: Solve for \( \sin 4\theta \) Rearranging the equation gives: \[ 4 \sin 4\theta = -1 - \sin^2 \theta \] Now, we can express \( \sin 4\theta \): \[ \sin 4\theta = \frac{-1 - \sin^2 \theta}{4} \] ### Step 5: Find the value of \( \sin 4\theta \) To find a specific value, we can assume \( \sin^2 \theta = 0 \) (which corresponds to \( \theta = 0 \) or \( \theta = \pi \)): \[ \sin 4\theta = \frac{-1 - 0}{4} = -\frac{1}{4} \] Thus, the final answer is: \[ \sin 4\theta = -\frac{1}{4} \]

To solve the problem, we need to evaluate the determinant of the given matrix and set it equal to zero. The matrix is: \[ \begin{pmatrix} 1 + \sin^2 \theta & \sin^2 \theta & \sin^2 \theta \\ \cos^2 \theta & 1 + \cos^2 \theta & \cos^2 \theta \\ 4 \sin 4\theta & 4 \sin 4\theta & 1 + 4 \sin 4\theta \end{pmatrix} ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • JEE MAIN REVISION TEST -14

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST 11 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION - 2)|4 Videos

Similar Questions

Explore conceptually related problems

(1+sin 2theta+cos 2theta)/(1+sin2 theta-cos 2 theta) =

If sintheta+sin^2theta=1 , prove that cos^2theta+cos^4theta=1

Knowledge Check

  • sin^(3)theta + sin theta - sin theta cos^(2)theta =

    A
    0
    B
    `sin theta`
    C
    `sin 2 theta`
    D
    `2sin^(3)theta`
  • Similar Questions

    Explore conceptually related problems

    1 + (cos 2 theta + cos 6 theta)/(cos 4 theta) = (sin 3 theta)/(sin theta).

    Prove that 1+cos^2 2theta=2(cos^4theta+sin^4theta)

    (sin theta + sin 2 theta)/( 1 + cos theta + cos 2 theta) = tan theta.

    Prove that : sin theta cos^3 theta - cos theta sin^3 theta = 1/4 sin4theta .

    Prove that: 1+cos^2 2theta=2(cos^4theta+sin^4theta)

    If sintheta+sin^2theta+sin^3theta=1, then prove that cos^6theta-4cos^4theta+8cos^2theta=4

    (1+sin2theta+cos2theta)/(1+sin2theta-cos2theta)=?