Home
Class 12
MATHS
Let cot alpha and cot beta be two real r...

Let `cot alpha and cot beta` be two real roots of the equation `5 cot ^(2) x- 3 cot x-1=0,` then `cot ^(2)(alpha + beta)=`

A

2

B

3

C

4

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \cot^2(\alpha + \beta) \) given that \( \cot \alpha \) and \( \cot \beta \) are the roots of the quadratic equation \( 5 \cot^2 x - 3 \cot x - 1 = 0 \). ### Step-by-Step Solution: 1. **Identify the coefficients of the quadratic equation:** The equation is in the standard form \( ax^2 + bx + c = 0 \), where: - \( a = 5 \) - \( b = -3 \) - \( c = -1 \) 2. **Calculate the sum of the roots:** The sum of the roots \( \cot \alpha + \cot \beta \) can be found using the formula: \[ \text{Sum of roots} = -\frac{b}{a} = -\frac{-3}{5} = \frac{3}{5} \] 3. **Calculate the product of the roots:** The product of the roots \( \cot \alpha \cdot \cot \beta \) can be found using the formula: \[ \text{Product of roots} = \frac{c}{a} = \frac{-1}{5} \] 4. **Use the cotangent addition formula:** We know the formula for \( \cot(\alpha + \beta) \): \[ \cot(\alpha + \beta) = \frac{\cot \alpha \cdot \cot \beta - 1}{\cot \alpha + \cot \beta} \] Substituting the values we found: \[ \cot(\alpha + \beta) = \frac{\left(-\frac{1}{5}\right) - 1}{\frac{3}{5}} = \frac{-\frac{1}{5} - \frac{5}{5}}{\frac{3}{5}} = \frac{-\frac{6}{5}}{\frac{3}{5}} \] 5. **Simplify the expression:** Dividing the fractions: \[ \cot(\alpha + \beta) = \frac{-6}{5} \cdot \frac{5}{3} = -2 \] 6. **Find \( \cot^2(\alpha + \beta) \):** Now we need to find \( \cot^2(\alpha + \beta) \): \[ \cot^2(\alpha + \beta) = (-2)^2 = 4 \] ### Final Answer: Thus, the value of \( \cot^2(\alpha + \beta) \) is \( \boxed{4} \).

To solve the problem, we need to find the value of \( \cot^2(\alpha + \beta) \) given that \( \cot \alpha \) and \( \cot \beta \) are the roots of the quadratic equation \( 5 \cot^2 x - 3 \cot x - 1 = 0 \). ### Step-by-Step Solution: 1. **Identify the coefficients of the quadratic equation:** The equation is in the standard form \( ax^2 + bx + c = 0 \), where: - \( a = 5 \) - \( b = -3 \) ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • JEE MAIN REVISON TEST-23

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE Main Revision Test-9 | JEE-2020

    VMC MODULES ENGLISH|Exercise SECTION 2|5 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|78 Videos

Similar Questions

Explore conceptually related problems

Let alpha and beta be two real roots of the equation 5cot^2x-3cotx-1=0 , then cot^2 (alpha+beta) =

Let alpha, beta be two real roots of the equation cot ^ 2 x - 2 lamda cot x + 3 = 0 , lamda in R . If cot ( alpha + beta ) = (1)/(2) , then value of lamda is :

Knowledge Check

  • If alpha and beta are roots of the equation 2x^(2)-3x-5=0 , then the value of (1)/(alpha)+(1)/(beta) is

    A
    `-(3)/(5)`
    B
    `(3)/(5)`
    C
    `(5)/(3)`
    D
    `-(5)/(3)`
  • If alpha and beta are roots of the equation x^(2)-2x+1=0 , then the value of (alpha)/(beta)+(beta)/(alpha) is

    A
    4
    B
    1
    C
    2
    D
    0
  • Similar Questions

    Explore conceptually related problems

    Let alpha, beta be two real roots of the equation cot ^ 2 x - 2 lamda cot x + 3 = 0 , lamda in R . If cot ( alpha + beta ) = (1)/(2) , then value of lamda is :

    Find the roots of the equation cot x - cos x=1-cot x cos x

    If alpha and beta are the roots of the equation x^2 + 5x-49=0 , then find the value of cot(cot^-1 alpha + cot^-1 beta) .

    Let alpha, beta are the roots of the equation x^(2)+x+1=0 , then alpha^3-beta^3

    If alpha and beta are roots of the quadratic equation x ^(2) + 4x +3=0, then the equation whose roots are 2 alpha + beta and alpha + 2 beta is :

    If alpha is a real root of the equation x^(2)+3x-tan2=0 then cot^(-1)alpha+"cot"^(-1)1/(alpha)-(pi)/2 can be equal to