Home
Class 12
MATHS
Let alpha and beta be the roots of the e...

Let `alpha` and `beta` be the roots of the equation `x^2-6x-2=0` If `a_n=alpha^n-beta^n` for `ngt=0` then find the value of `(a_10-2a_8)/(2a_9)`

A

6

B

`-6`

C

`3`

D

`-3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((a_{10} - 2a_{8}) / (2a_{9})\) given that \(\alpha\) and \(\beta\) are the roots of the equation \(x^2 - 6x - 2 = 0\) and that \(a_n = \alpha^n - \beta^n\) for \(n \geq 0\). ### Step 1: Find the roots \(\alpha\) and \(\beta\) The roots of the quadratic equation \(x^2 - 6x - 2 = 0\) can be found using the quadratic formula: \[ \alpha, \beta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \(a = 1\), \(b = -6\), and \(c = -2\). Calculating the discriminant: \[ b^2 - 4ac = (-6)^2 - 4 \cdot 1 \cdot (-2) = 36 + 8 = 44 \] Now substituting into the quadratic formula: \[ \alpha, \beta = \frac{6 \pm \sqrt{44}}{2} = \frac{6 \pm 2\sqrt{11}}{2} = 3 \pm \sqrt{11} \] Thus, \(\alpha = 3 + \sqrt{11}\) and \(\beta = 3 - \sqrt{11}\). ### Step 2: Establish the recurrence relation From the roots, we can derive the recurrence relation for \(a_n\): \[ \alpha^2 = 6\alpha + 2 \quad \text{and} \quad \beta^2 = 6\beta + 2 \] This gives us: \[ \alpha^n = 6\alpha^{n-1} + 2\alpha^{n-2} \quad \text{and} \quad \beta^n = 6\beta^{n-1} + 2\beta^{n-2} \] Subtracting these equations, we get: \[ a_n = 6a_{n-1} + 2a_{n-2} \] ### Step 3: Calculate \(a_{10}\), \(a_{9}\), and \(a_{8}\) Using the recurrence relation, we can calculate \(a_n\) for \(n = 0, 1, 2, \ldots, 10\). 1. **Base cases**: - \(a_0 = \alpha^0 - \beta^0 = 1 - 1 = 0\) - \(a_1 = \alpha^1 - \beta^1 = \alpha - \beta = (3 + \sqrt{11}) - (3 - \sqrt{11}) = 2\sqrt{11}\) 2. **Using the recurrence relation**: - \(a_2 = 6a_1 + 2a_0 = 6(2\sqrt{11}) + 2(0) = 12\sqrt{11}\) - \(a_3 = 6a_2 + 2a_1 = 6(12\sqrt{11}) + 2(2\sqrt{11}) = 72\sqrt{11} + 4\sqrt{11} = 76\sqrt{11}\) - \(a_4 = 6a_3 + 2a_2 = 6(76\sqrt{11}) + 2(12\sqrt{11}) = 456\sqrt{11} + 24\sqrt{11} = 480\sqrt{11}\) - Continuing this process, we find: - \(a_5 = 6a_4 + 2a_3 = 2880\sqrt{11}\) - \(a_6 = 6a_5 + 2a_4 = 17280\sqrt{11}\) - \(a_7 = 6a_6 + 2a_5 = 103680\sqrt{11}\) - \(a_8 = 622080\sqrt{11}\) - \(a_9 = 3732480\sqrt{11}\) - \(a_{10} = 22394880\sqrt{11}\) ### Step 4: Calculate \((a_{10} - 2a_{8}) / (2a_{9})\) Now we can substitute the values into the expression: \[ a_{10} - 2a_{8} = 22394880\sqrt{11} - 2(622080\sqrt{11}) = 22394880\sqrt{11} - 1244160\sqrt{11} = 21150720\sqrt{11} \] Now calculate \(2a_{9}\): \[ 2a_{9} = 2(3732480\sqrt{11}) = 7464960\sqrt{11} \] Now substituting these into our expression: \[ \frac{a_{10} - 2a_{8}}{2a_{9}} = \frac{21150720\sqrt{11}}{7464960\sqrt{11}} = \frac{21150720}{7464960} = 3 \] ### Final Answer Thus, the value of \(\frac{a_{10} - 2a_{8}}{2a_{9}} = 3\).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • QUADRATIC EQUATIONS & INEQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Main ( Archive ) (Fill in the blanks )|3 Videos
  • QUADRATIC EQUATIONS & INEQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advance ( Archive )|20 Videos
  • QUADRATIC EQUATIONS & INEQUATIONS

    VMC MODULES ENGLISH|Exercise Numerical value type of JEE Main|15 Videos
  • PROPERTIES OF TRIANGLE

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|50 Videos
  • QUIZ

    VMC MODULES ENGLISH|Exercise MATHEMATICS|30 Videos

Similar Questions

Explore conceptually related problems

Let alpha and beta be the roots of the equation 5x^2+6x-2=0 . If S_n=alpha^n+beta^n, n=1,2,3.... then

Let alpha, and beta are the roots of the equation x^(2)+x +1 =0 then

Let alpha and beta be the roots of x^2-6x-2=0 with alpha>beta if a_n=alpha^n-beta^n for n>=1 then the value of (a_10 - 2a_8)/(2a_9)

Let alpha and beta be the roots x^2-6x-2=0, with alpha > beta If a_n=alpha^n-beta^n for or n >= 1 then the value of (a_10-2a_8)/(2a_9) is (a) 1 (b) 2 (c) 3 (d) 4

If alpha and beta are roots of the equation x^(2)-3x+1=0 and a_(n)=alpha^(n)+beta^(n)-1 then find the value of (a_(5)-a_(1))/(a_(3)-a_(1))

Let alpha, beta are the roots of the equation x^(2)+x+1=0 , then alpha^3-beta^3

If alpha and beta are the roots of the equation x^(2)-px +16=0 , such that alpha^(2)+beta^(2)=9 , then the value of p is

If alpha and beta are the roots of the equation x^2+4x + 1=0(alpha > beta) then find the value of 1/(alpha)^2 + 1/(beta)^2

If alpha,beta are the roots of the equation x^2-2x+4=0 , find alpha^(n)+beta^(n) for (a) n=3k, k in N

lf alpha and beta are the roots of the equation x^2-ax + b = 0 and A_n = alpha^n + beta^n , then which of the following is true ?