Home
Class 12
MATHS
Sate true/false. The points with positio...

Sate true/false. The points with position vectors `veca + vecb, veca-vecb and veca +k vecb` are collinear for all real values of k.

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the statement is true or false, we need to analyze the position vectors given and check if they are collinear for all real values of \( k \). ### Step-by-step Solution: 1. **Identify the Points**: Let the points be defined by the following position vectors: - \( A \) with position vector \( \vec{a} + \vec{b} \) - \( B \) with position vector \( \vec{a} - \vec{b} \) - \( C \) with position vector \( \vec{a} + k\vec{b} \) 2. **Find the Vectors \( \vec{AB} \) and \( \vec{AC} \)**: - The vector \( \vec{AB} \) is given by: \[ \vec{AB} = \vec{B} - \vec{A} = (\vec{a} - \vec{b}) - (\vec{a} + \vec{b}) = \vec{a} - \vec{b} - \vec{a} - \vec{b} = -2\vec{b} \] - The vector \( \vec{AC} \) is given by: \[ \vec{AC} = \vec{C} - \vec{A} = (\vec{a} + k\vec{b}) - (\vec{a} + \vec{b}) = \vec{a} + k\vec{b} - \vec{a} - \vec{b} = (k - 1)\vec{b} \] 3. **Check for Collinearity**: - For points \( A, B, C \) to be collinear, the vectors \( \vec{AB} \) and \( \vec{AC} \) must be parallel. This means that there exists a scalar \( \lambda \) such that: \[ \vec{AC} = \lambda \vec{AB} \] - Substituting the values we found: \[ (k - 1)\vec{b} = \lambda (-2\vec{b}) \] - Since \( \vec{b} \) is not the zero vector, we can divide both sides by \( \vec{b} \): \[ k - 1 = -2\lambda \] 4. **Analyze the Result**: - The equation \( k - 1 = -2\lambda \) shows that for any real value of \( k \), we can find a corresponding value of \( \lambda \) that satisfies this equation. This indicates that \( A, B, C \) are indeed collinear for all real values of \( k \). 5. **Conclusion**: - Since we have shown that the points are collinear for all real values of \( k \), the statement is **True**.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (INTEGER TYPE)|4 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

Show that points with position vectors 2veca-2vecb+3vecc,-2veca+3vecb-vecc and 6veca-7vecb+7vecc are collinear. It is given that vectors veca,vecb and vecc and non-coplanar.

Show that the points having position vectors (veca-2vecb+3vecc),(-2veca+3vecb+2vecc),(-8veca+13vecb) re collinear whatever veca,vecb,vecc may be

If |veca+vecb|=|veca-vecb| show that veca_|_vecb .

For any two vectors veca and vecb prove that |veca.vecb|<=|veca||vecb|

If veca,vecb,vecc are three non zero vectors (no two of which are collinear) such that the pairs of vectors (veca+vecb,vecc) and (vecb+vecc,veca) are colliner, then what is the value of veca+vecb+vecc ? (A) veca is parrallel to vecb (B) vecb (C) vecc (D) vec0

Show that the points whose position vectors are veca,vecb,vecc,vecd will be coplanar if [veca vecb vecc]-[veca vecb vecd]+[veca vecc vecd]-[vecb vecc vecd]=0

If A,B,C are three non-collinear points with position vectors veca, vecb, vecc respectively then show that the lengths of the perpendicular from C on AB is : (|.(veca xx vecb)+(vecb xx vecc)+(vecb xx veca)|)/(|vecb-veca|)

a,b are the magnitudes of vectors veca & vecb . If vecaxxvecb=0 the value of veca.vecb is

If a,b are the magnitudes of vectors veca & vecb and veca.vecb=0 the value of |vecaxxvecb| is

If veca and vecb are non zero, non collinear vectors and veca_(1)=lambda veca+3 vecb, vecb_(1)=2veca+lambda vecb, vec c_(1)=veca+vecb . Find the sum of all possible real values of lambda so that points A_(1), B_(1), C_(1) whose position vectors are veca_(1), vecb_(1), vec c_(1) respectively are collinear is equal to.