Home
Class 12
MATHS
If [(a(11),a(12),a(13)),(a(21),a(22),a(2...

If `[(a_(11),a_(12),a_(13)),(a_(21),a_(22),a_(23)),(a_(31),a_(32),a_(33))]=[(1,2,3),(2,3,4),(3,4,5)][(-1,-2),(-2,0),(0,-4)][(-4,-5,-6),(0,0,1)]`, then the value of `a_(22)` is -

A

40

B

`-40`

C

`-20`

D

20

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a_{22} \) from the equation: \[ \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{pmatrix} \begin{pmatrix} -1 & -2 \\ -2 & 0 \\ 0 & -4 \end{pmatrix} \begin{pmatrix} -4 & -5 & -6 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 1: Multiply the first two matrices Let \( A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{pmatrix} \) and \( B = \begin{pmatrix} -1 & -2 \\ -2 & 0 \\ 0 & -4 \end{pmatrix} \). To find the product \( AB \): \[ AB = \begin{pmatrix} 1 \cdot (-1) + 2 \cdot (-2) + 3 \cdot 0 & 1 \cdot (-2) + 2 \cdot 0 + 3 \cdot (-4) \\ 2 \cdot (-1) + 3 \cdot (-2) + 4 \cdot 0 & 2 \cdot (-2) + 3 \cdot 0 + 4 \cdot (-4) \\ 3 \cdot (-1) + 4 \cdot (-2) + 5 \cdot 0 & 3 \cdot (-2) + 4 \cdot 0 + 5 \cdot (-4) \end{pmatrix} \] Calculating each element: - First row, first column: \( 1 \cdot (-1) + 2 \cdot (-2) + 3 \cdot 0 = -1 - 4 + 0 = -5 \) - First row, second column: \( 1 \cdot (-2) + 2 \cdot 0 + 3 \cdot (-4) = -2 + 0 - 12 = -14 \) - Second row, first column: \( 2 \cdot (-1) + 3 \cdot (-2) + 4 \cdot 0 = -2 - 6 + 0 = -8 \) - Second row, second column: \( 2 \cdot (-2) + 3 \cdot 0 + 4 \cdot (-4) = -4 + 0 - 16 = -20 \) - Third row, first column: \( 3 \cdot (-1) + 4 \cdot (-2) + 5 \cdot 0 = -3 - 8 + 0 = -11 \) - Third row, second column: \( 3 \cdot (-2) + 4 \cdot 0 + 5 \cdot (-4) = -6 + 0 - 20 = -26 \) Thus, we have: \[ AB = \begin{pmatrix} -5 & -14 \\ -8 & -20 \\ -11 & -26 \end{pmatrix} \] ### Step 2: Multiply the result with the third matrix Let \( C = \begin{pmatrix} -4 & -5 & -6 \\ 0 & 0 & 1 \end{pmatrix} \). Now, we need to calculate \( (AB)C \): \[ (AB)C = \begin{pmatrix} -5 & -14 \\ -8 & -20 \\ -11 & -26 \end{pmatrix} \begin{pmatrix} -4 & -5 & -6 \\ 0 & 0 & 1 \end{pmatrix} \] Calculating each element: - First row, first column: \( -5 \cdot (-4) + (-14) \cdot 0 = 20 + 0 = 20 \) - First row, second column: \( -5 \cdot (-5) + (-14) \cdot 0 = 25 + 0 = 25 \) - First row, third column: \( -5 \cdot (-6) + (-14) \cdot 1 = 30 - 14 = 16 \) - Second row, first column: \( -8 \cdot (-4) + (-20) \cdot 0 = 32 + 0 = 32 \) - Second row, second column: \( -8 \cdot (-5) + (-20) \cdot 0 = 40 + 0 = 40 \) - Second row, third column: \( -8 \cdot (-6) + (-20) \cdot 1 = 48 - 20 = 28 \) - Third row, first column: \( -11 \cdot (-4) + (-26) \cdot 0 = 44 + 0 = 44 \) - Third row, second column: \( -11 \cdot (-5) + (-26) \cdot 0 = 55 + 0 = 55 \) - Third row, third column: \( -11 \cdot (-6) + (-26) \cdot 1 = 66 - 26 = 40 \) Thus, we have: \[ (AB)C = \begin{pmatrix} 20 & 25 & 16 \\ 32 & 40 & 28 \\ 44 & 55 & 40 \end{pmatrix} \] ### Step 3: Identify \( a_{22} \) From the resulting matrix, we can see that: \[ a_{22} = 40 \] ### Final Answer: The value of \( a_{22} \) is \( 40 \). ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise LEVEL 2|47 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • JEE MAIN REVISON TEST-23

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 1

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos

Similar Questions

Explore conceptually related problems

Let A=[a_("ij")]_(3xx3) be a matrix such that A A^(T)=4I and a_("ij")+2c_("ij")=0 , where C_("ij") is the cofactor of a_("ij") and I is the unit matrix of order 3. |(a_(11)+4,a_(12),a_(13)),(a_(21),a_(22)+4,a_(23)),(a_(31),a_(32),a_(33)+4)|+5 lambda|(a_(11)+1,a_(12),a_(13)),(a_(21),a_(22)+1,a_(23)),(a_(31),a_(32),a_(33)+1)|=0 then the value of lambda is

If Delta=|{:(a_(11),a_(12),a_(13)),(a_(21),a_(22),a_(23)),(a_(31),a_(32),a_(33)):}| then cofactor of a_23 represented as

Let A=([a_(i j)])_(3xx3) be a matrix such that AA^T=4Ia n da_(i j)+2c_(i j)=0,w h e r ec_(i j) is the cofactor of a_(i j)a n dI is the unit matrix of order 3. |a_(11)+4a_(12)a_(13)a_(21)a_(22)+4a_(23)a_(31)a_(32)a_(33)+4|+5lambda|a_(11)+1a_(12)a_(13)a_(21)a_(22)+1a_(23)a_(31)a_(32)a_(33)+1|=0 then the value of 10lambda is _______.

If a_(1),a_(2),a_(3),a_(4),a_(5) are in HP, then a_(1)a_(2)+a_(2)a_(3)+a_(3)a_(4)+a_(4)a_(5) is equal to

If (a_(2)a_(3))/(a_(1)a_(4))=(a_(2)+a_(3))/(a_(1)+a_(4))=3((a_(2)-a_(3))/(a_(1)-a_(4))) , then a_(1),a_(2),a_(3),a_(4) are in

If Delta=|(a_(11), a_(12), a_(13) ),(a_(21), a_(22), a_(23)),(a_(31), a_(32), a_(33))| and A_(i j) is cofactors of a_(i j) , then value of Delta is given by (A) a_(11)A_(31)+a_(12)A_(32)+a_(13)A_(33) (B) a_(11)A_(11)+a_(12)A_(21)+a_(13)A_(31) (C) a_(21)A_(11)+a_(22)A_(12)+a_(23)A_(13) (D) a_(11)A_(11)+a_(21)A_(21)+a_(31)A_(31)

if (1+ax+bx^(2))^(4)=a_(0) +a_(1)x+a_(2)x^(2)+…..+a_(8)x^(8), where a,b,a_(0) ,a_(1)…….,a_(8) in R such that a_(0)+a_(1) +a_(2) ne 0 and |{:(a_(0),,a_(1),,a_(2)),(a_(1),,a_(2),,a_(0)),(a_(2),,a_(0),,a_(1)):}|=0 then the value of 5.(a)/(b) " is " "____"

if a_(1),a_(2),a_(3)……,a_(12) are in A.P and Delta_(1)= |{:(a_(1)a_(5),,a_(1),,a_(2)),(a_(2)a_(6),,a_(2),,a_(3)),(a_(3)a_(7),,a_(3),,a_(4)):}| Delta_(2)= |{:(a_(2)a_(10),,a_(2),,a_(3)),(a_(3)a_(11),,a_(3),,a_(4)),(a_(4)a_(12),,a_(4),,a_(5)):}| then Delta_(1):Delta_(2)= "_____"

If Delta=|[a_(11),a_(12),a_(13)],[a_(21),a_(22),a_(23)],[a_(31),a_(32),a_(33)]| and A_(i j) is cofactors of a_(i j) , then value of Delta is given by A. a_(11)A_(31)+a_(12)A_(32)+a_(13)A_(33) B. a_(11)A_(11)+a_(12)A_(21)+a_(13)A_(31) C. a_(21)A_(11) + a_(22)A_(12) + a_(23)A_(13) D. a_(11)A_(11) + a_(21)A_(21) + a_(31)A_(31)

If Delta=|[a_(11),a_(12),a_(13)],[a_(21),a_(22),a_(23)],[a_(31),a_(32),a_(33)]| and A_(i j) is cofactors of a_(i j) , then value of Delta is given by