Home
Class 12
MATHS
The inverse of [(3,5,7),(2,-3,1),(1,1,2)...

The inverse of `[(3,5,7),(2,-3,1),(1,1,2)]` is :

A

`[(7,3,-26),(3,1,-11),(-5,-2,0)]`

B

`[(7,3,-26),(3,1,11),(-5,-2,1)]`

C

`[(3,1,11),(7,3,-26),(-5,2,1)]`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{pmatrix} 3 & 5 & 7 \\ 2 & -3 & 1 \\ 1 & 1 & 2 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of A The determinant of a \( 3 \times 3 \) matrix \( A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \) is given by: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): - \( a = 3, b = 5, c = 7 \) - \( d = 2, e = -3, f = 1 \) - \( g = 1, h = 1, i = 2 \) Calculating the determinant: \[ \text{det}(A) = 3((-3)(2) - (1)(1)) - 5((2)(2) - (1)(1)) + 7((2)(1) - (-3)(1)) \] \[ = 3(-6 - 1) - 5(4 - 1) + 7(2 + 3) \] \[ = 3(-7) - 5(3) + 7(5) \] \[ = -21 - 15 + 35 = -1 \] ### Step 2: Check if the Inverse Exists Since the determinant \( \text{det}(A) = -1 \) is not equal to zero, the inverse of \( A \) exists. ### Step 3: Find the Cofactor Matrix The cofactor matrix \( C \) is calculated by finding the cofactors for each element of \( A \). 1. **Cofactor \( C_{11} \)**: \[ C_{11} = (-1)^{1+1} \cdot \text{det}\begin{pmatrix} -3 & 1 \\ 1 & 2 \end{pmatrix} = 1((-3)(2) - (1)(1)) = -6 - 1 = -7 \] 2. **Cofactor \( C_{12} \)**: \[ C_{12} = (-1)^{1+2} \cdot \text{det}\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} = -1((2)(2) - (1)(1)) = -3 \] 3. **Cofactor \( C_{13} \)**: \[ C_{13} = (-1)^{1+3} \cdot \text{det}\begin{pmatrix} 2 & -3 \\ 1 & 1 \end{pmatrix} = 1((2)(1) - (-3)(1)) = 2 + 3 = 5 \] 4. **Cofactor \( C_{21} \)**: \[ C_{21} = (-1)^{2+1} \cdot \text{det}\begin{pmatrix} 5 & 7 \\ 1 & 2 \end{pmatrix} = -1((5)(2) - (7)(1)) = -3 \] 5. **Cofactor \( C_{22} \)**: \[ C_{22} = (-1)^{2+2} \cdot \text{det}\begin{pmatrix} 3 & 7 \\ 1 & 2 \end{pmatrix} = 1((3)(2) - (7)(1)) = -1 \] 6. **Cofactor \( C_{23} \)**: \[ C_{23} = (-1)^{2+3} \cdot \text{det}\begin{pmatrix} 3 & 5 \\ 1 & 1 \end{pmatrix} = -1((3)(1) - (5)(1)) = 2 \] 7. **Cofactor \( C_{31} \)**: \[ C_{31} = (-1)^{3+1} \cdot \text{det}\begin{pmatrix} 5 & 7 \\ -3 & 1 \end{pmatrix} = 1((5)(1) - (7)(-3)) = 5 + 21 = 26 \] 8. **Cofactor \( C_{32} \)**: \[ C_{32} = (-1)^{3+2} \cdot \text{det}\begin{pmatrix} 3 & 7 \\ 2 & 1 \end{pmatrix} = -1((3)(1) - (7)(2)) = -11 \] 9. **Cofactor \( C_{33} \)**: \[ C_{33} = (-1)^{3+3} \cdot \text{det}\begin{pmatrix} 3 & 5 \\ 2 & -3 \end{pmatrix} = 1((3)(-3) - (5)(2)) = -9 - 10 = -19 \] The cofactor matrix \( C \) is: \[ C = \begin{pmatrix} -7 & -3 & 5 \\ -3 & -1 & 2 \\ 26 & -11 & -19 \end{pmatrix} \] ### Step 4: Transpose the Cofactor Matrix to Get the Adjoint The adjoint of \( A \) is the transpose of the cofactor matrix: \[ \text{adj}(A) = C^T = \begin{pmatrix} -7 & -3 & 26 \\ -3 & -1 & -11 \\ 5 & 2 & -19 \end{pmatrix} \] ### Step 5: Calculate the Inverse of A Using the formula for the inverse: \[ A^{-1} = \frac{\text{adj}(A)}{\text{det}(A)} = -\text{adj}(A) \] Thus, \[ A^{-1} = -\begin{pmatrix} -7 & -3 & 26 \\ -3 & -1 & -11 \\ 5 & 2 & -19 \end{pmatrix} = \begin{pmatrix} 7 & 3 & -26 \\ 3 & 1 & 11 \\ -5 & -2 & 19 \end{pmatrix} \] ### Final Answer The inverse of the matrix \( A \) is: \[ A^{-1} = \begin{pmatrix} 7 & 3 & -26 \\ 3 & 1 & 11 \\ -5 & -2 & 19 \end{pmatrix} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise LEVEL 2|47 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • JEE MAIN REVISON TEST-23

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 1

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos

Similar Questions

Explore conceptually related problems

Find the inverse of [(1, 2, 3),( 2, 3, 1),( 3, 1, 2)] .

Find the inverse of f={(1,2),(2,3),(3,2)}

Knowledge Check

  • The inverse of f={(1,2),(2,3),(3,4),(4,1),(5,2)} would be a function if the domain of f is limited to

    A
    {1,3,5}
    B
    {1,2,3,4}
    C
    {1,5}
    D
    {1,2,4,5}
  • Similar Questions

    Explore conceptually related problems

    Find the inverse of [(1, 2, 5),( 1,-1,-1),( 2 ,3,-1)]

    Find the inverse of [(2, 0,-1),( 5, 1, 0),( 0, 1, 3)]

    The inverse of the matrix [(2,3),(-4,7)] is (A) [(-2,-3),(4,-7)] (B) 1/26 [(7,-3),(4,2)] (C) [(7,4),(-3,2)] (D) [(7,-3),(4,2)]

    Find the inverse of [(0, 0,-1), (3 ,4 ,5),(-2,-4,-7)]

    Using elementry transformation, find the inverse of the matrix. [{:(,0,1,2),(,1,2,3),(,3,1,1,):}]

    Find the inverse of Matrix A=[{:(1,3,-2),(-3,0,-5),(2,5,0):}] by using elementary row transformation.

    Using elementary transformations, find the inverse of the matrices A=[(2,0,-1),(5,1,0),(0,1,3)]A^-1=?