Home
Class 12
MATHS
""^(15)C(0)*""^(5)C(5)+""^(15)C(1)*""^(5...

`""^(15)C_(0)*""^(5)C_(5)+""^(15)C_(1)*""^(5)C_(4)+""^(15)C_(2)*""^(5)C_(3)+""^(15)C_(3)*""^(5)C_(2)+""^(15)C_(4)*""^(5)C_(1)` is equal to :

A

`2^(20)-2^(5)`

B

`(20!)/(5!15!)`

C

`(20!)/(5!15!)-1`

D

`(20!)/(5!15!)-(15!)/(5!10!)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ S = \sum_{k=0}^{4} \binom{15}{k} \binom{5}{5-k} \] we can rewrite it as: \[ S = \binom{15}{0} \binom{5}{5} + \binom{15}{1} \binom{5}{4} + \binom{15}{2} \binom{5}{3} + \binom{15}{3} \binom{5}{2} + \binom{15}{4} \binom{5}{1} \] ### Step 1: Recognize the Binomial Theorem The expression can be interpreted using the binomial theorem. The binomial theorem states that: \[ (1+x)^n = \sum_{k=0}^{n} \binom{n}{k} x^k \] ### Step 2: Apply the Binomial Theorem We can apply the binomial theorem to both \( (1+x)^{15} \) and \( (1+x)^{5} \): \[ (1+x)^{15} = \sum_{k=0}^{15} \binom{15}{k} x^k \] \[ (1+x)^{5} = \sum_{j=0}^{5} \binom{5}{j} x^j \] ### Step 3: Multiply the Two Expansions Now, we multiply these two expansions: \[ (1+x)^{15} \cdot (1+x)^{5} = (1+x)^{20} \] ### Step 4: Identify the Coefficient of \( x^5 \) We need to find the coefficient of \( x^5 \) in the expansion of \( (1+x)^{20} \): \[ (1+x)^{20} = \sum_{m=0}^{20} \binom{20}{m} x^m \] The coefficient of \( x^5 \) is given by \( \binom{20}{5} \). ### Step 5: Include the Missing Term However, in our original expression, we missed the term \( \binom{15}{5} \binom{5}{0} \). Therefore, we need to subtract this term from our result: \[ S = \binom{20}{5} - \binom{15}{5} \] ### Step 6: Calculate the Values Now we can calculate: \[ \binom{20}{5} = \frac{20!}{5! \cdot 15!} \] \[ \binom{15}{5} = \frac{15!}{5! \cdot 10!} \] Thus, \[ S = \frac{20!}{5! \cdot 15!} - \frac{15!}{5! \cdot 10!} \] ### Step 7: Simplify Now we can simplify \( S \): \[ S = \frac{20!}{5! \cdot 15!} - \frac{15!}{5! \cdot 10!} = \frac{20!}{5! \cdot 15!} - \frac{15! \cdot 15!}{5! \cdot 10! \cdot 15!} = \frac{20!}{5! \cdot 15!} - \frac{15!}{5! \cdot 10!} \] ### Final Result This gives us the final answer for \( S \).
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise JEE Archive|56 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise LEVEL 1|89 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos

Similar Questions

Explore conceptually related problems

""^(15)C_(9)-_""^(15)C_(6)+""^(15)C_(7)-^(15)C_(8) equals to

""^(15)C_(8) + ""^(15)C_(9) - ""^(15)C_(6) - ""^(15)C_(7) is equal to ………. .

Find the sum of the following (""^(15)C_(1))/(""^(15)C_(0))+2(""^(15)C_(2))/(""^(15)C_(1))+3(""^(15)C_(3))/(""^(15)C_(2))+......+15(""^(15)C_(15))/(""^(15)C_(14))

If ""^(18)C_(15)+2(""^(18)C_(16))+""^(17)C_(16)+1=""^(n)C_(3) , then n is equal to :

Verify that ""^(9)C_(5)+""^(9)C_(4)=""^(10)C_(5)

The value of sum_(r=0)^(15)r^(2)((""^(15)C_(r))/(""^(15)C_(r-1))) is equal to

Evaluate : 1+^(15)C_(1)+^(15)C_(2)+^(15)C_(3)+......+^(15)C_(15)

Evaluate : 1+^(15)C_(1)+^(15)C_(2)+^(15)C_(3)+......+^(15)C_(15)

If .^(15)C_(3r)=.^(15)C_(r+3), find .^(r)C_(2) .

The value of ((""^(50)C_(0))/(1)+(""^(50)C_(2))/(3)+(""^(50)C_(4))/(5)+….+(""^(50)C_(50))/(51)) is :

VMC MODULES ENGLISH-BINOMIAL THEOREM-LEVEL 2
  1. If |x|<1, then find the coefficient of x^n in the expansion of (1+2x+3...

    Text Solution

    |

  2. ""^(15)C(0)*""^(5)C(5)+""^(15)C(1)*""^(5)C(4)+""^(15)C(2)*""^(5)C(3)+"...

    Text Solution

    |

  3. The value of underset(r=1)overset(n)sum(-1)^(r+1)(.^(n)C(r))/(r+1) is ...

    Text Solution

    |

  4. The sum of the series underset(r=1)overset(n)sum(-1)^(r-1)..^(n)C(r)(a...

    Text Solution

    |

  5. Find the sum 2C0+(2^3)/2C1+(2^3)/3C2+(2^4)/4C3++(2^(11))/(11)C(10)dot

    Text Solution

    |

  6. The sum to (n+1) terms of the series C0/2-C1/3+C2/4-C3/5+......=

    Text Solution

    |

  7. If (1+x)^(n)=C(0)+C(1)x+…..+C(n)x^(n), then (C(1))/(C(0))+(2C(2))/(C(1...

    Text Solution

    |

  8. sum(r=0)^(n)(""^(n)C(r))/(r+2) is equal to :

    Text Solution

    |

  9. If .^(47)C(4)+underset(r=1)overset(5)(sum).^(52-r)C(3) is equal to

    Text Solution

    |

  10. sum(r=0)^m .^(n+r)Cn is equal to

    Text Solution

    |

  11. Evaluate sum(i=0)^(n)sum(j=0)^(n) ""^(n)C(j) *""^(j)C(i), ile j .

    Text Solution

    |

  12. sum(r=0)^(n)((r+2)/(r+1))*""^(n)C(r) is equal to :

    Text Solution

    |

  13. The expression (""^(10)C(0))^(2)-(""^(10)C(1))^(2)+(""^(10)C(2))^(2)...

    Text Solution

    |

  14. If C(0),C(1), C(2),...,C(n) denote the cefficients in the expansion...

    Text Solution

    |

  15. If (1 + x)^(n) = C(0) + C(1) x + C(2) x^(2) +…+ C(n) x^(n) , find the...

    Text Solution

    |

  16. If (1 + x)^(n) = C(0) + C(1) x + C(2) x^(2) +…+ C(n) x^(n) , find the...

    Text Solution

    |

  17. If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+….+C(n)x^(n), then the value of sums...

    Text Solution

    |

  18. If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+….+C(n)x^(n), then the value of sums...

    Text Solution

    |

  19. Find the value of underset(0leiltjlen)(sumsum)(.^(n)C(i)+.^(n)C(j)).

    Text Solution

    |

  20. If n is a positive integer and C(k)=""^(n)C(k), then the value of sum(...

    Text Solution

    |