Home
Class 12
MATHS
""^(15)C(0)*""^(5)C(5)+""^(15)C(1)*""^(5...

`""^(15)C_(0)*""^(5)C_(5)+""^(15)C_(1)*""^(5)C_(4)+""^(15)C_(2)*""^(5)C_(3)+""^(15)C_(3)*""^(5)C_(2)+""^(15)C_(4)*""^(5)C_(1)` is equal to :

A

`2^(20)-2^(5)`

B

`(20!)/(5!15!)`

C

`(20!)/(5!15!)-1`

D

`(20!)/(5!15!)-(15!)/(5!10!)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ S = \sum_{k=0}^{4} \binom{15}{k} \binom{5}{5-k} \] we can rewrite it as: \[ S = \binom{15}{0} \binom{5}{5} + \binom{15}{1} \binom{5}{4} + \binom{15}{2} \binom{5}{3} + \binom{15}{3} \binom{5}{2} + \binom{15}{4} \binom{5}{1} \] ### Step 1: Recognize the Binomial Theorem The expression can be interpreted using the binomial theorem. The binomial theorem states that: \[ (1+x)^n = \sum_{k=0}^{n} \binom{n}{k} x^k \] ### Step 2: Apply the Binomial Theorem We can apply the binomial theorem to both \( (1+x)^{15} \) and \( (1+x)^{5} \): \[ (1+x)^{15} = \sum_{k=0}^{15} \binom{15}{k} x^k \] \[ (1+x)^{5} = \sum_{j=0}^{5} \binom{5}{j} x^j \] ### Step 3: Multiply the Two Expansions Now, we multiply these two expansions: \[ (1+x)^{15} \cdot (1+x)^{5} = (1+x)^{20} \] ### Step 4: Identify the Coefficient of \( x^5 \) We need to find the coefficient of \( x^5 \) in the expansion of \( (1+x)^{20} \): \[ (1+x)^{20} = \sum_{m=0}^{20} \binom{20}{m} x^m \] The coefficient of \( x^5 \) is given by \( \binom{20}{5} \). ### Step 5: Include the Missing Term However, in our original expression, we missed the term \( \binom{15}{5} \binom{5}{0} \). Therefore, we need to subtract this term from our result: \[ S = \binom{20}{5} - \binom{15}{5} \] ### Step 6: Calculate the Values Now we can calculate: \[ \binom{20}{5} = \frac{20!}{5! \cdot 15!} \] \[ \binom{15}{5} = \frac{15!}{5! \cdot 10!} \] Thus, \[ S = \frac{20!}{5! \cdot 15!} - \frac{15!}{5! \cdot 10!} \] ### Step 7: Simplify Now we can simplify \( S \): \[ S = \frac{20!}{5! \cdot 15!} - \frac{15!}{5! \cdot 10!} = \frac{20!}{5! \cdot 15!} - \frac{15! \cdot 15!}{5! \cdot 10! \cdot 15!} = \frac{20!}{5! \cdot 15!} - \frac{15!}{5! \cdot 10!} \] ### Final Result This gives us the final answer for \( S \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise JEE Archive|56 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise LEVEL 1|89 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos

Similar Questions

Explore conceptually related problems

""^(15)C_(9)-_""^(15)C_(6)+""^(15)C_(7)-^(15)C_(8) equals to

""^(15)C_(8) + ""^(15)C_(9) - ""^(15)C_(6) - ""^(15)C_(7) is equal to ………. .

Find the sum of the following (""^(15)C_(1))/(""^(15)C_(0))+2(""^(15)C_(2))/(""^(15)C_(1))+3(""^(15)C_(3))/(""^(15)C_(2))+......+15(""^(15)C_(15))/(""^(15)C_(14))

If ""^(18)C_(15)+2(""^(18)C_(16))+""^(17)C_(16)+1=""^(n)C_(3) , then n is equal to :

Verify that ""^(9)C_(5)+""^(9)C_(4)=""^(10)C_(5)

The value of sum_(r=0)^(15)r^(2)((""^(15)C_(r))/(""^(15)C_(r-1))) is equal to

Evaluate : 1+^(15)C_(1)+^(15)C_(2)+^(15)C_(3)+......+^(15)C_(15)

Evaluate : 1+^(15)C_(1)+^(15)C_(2)+^(15)C_(3)+......+^(15)C_(15)

If .^(15)C_(3r)=.^(15)C_(r+3), find .^(r)C_(2) .

The value of ((""^(50)C_(0))/(1)+(""^(50)C_(2))/(3)+(""^(50)C_(4))/(5)+….+(""^(50)C_(50))/(51)) is :