Home
Class 12
PHYSICS
Let vec(A)=hat(i)A cos theta+hat(j)A sin...

Let `vec(A)=hat(i)A cos theta+hat(j)A sin theta`, be any vector. Another vector `vec(B)` which is normal to `vec(A)` is :-

A

`hat(i) B cos theta + hat(j) B sin theta`

B

`hat(i) B sin theta + hat(j) B cos theta`

C

`hat(i) B sin theta - hat(j) B cos theta`

D

`hat(i) B cos theta - hat(j) B sin theta`

Text Solution

AI Generated Solution

The correct Answer is:
To find the vector \(\vec{B}\) that is normal (perpendicular) to the vector \(\vec{A}\), we can follow these steps: ### Step 1: Understand the Given Vector The vector \(\vec{A}\) is given as: \[ \vec{A} = \hat{i} A \cos \theta + \hat{j} A \sin \theta \] ### Step 2: Condition for Perpendicular Vectors Two vectors \(\vec{A}\) and \(\vec{B}\) are perpendicular if their dot product is zero: \[ \vec{A} \cdot \vec{B} = 0 \] ### Step 3: Assume a General Form for \(\vec{B}\) Let's assume \(\vec{B}\) can be expressed in the form: \[ \vec{B} = \hat{i} B_x + \hat{j} B_y \] where \(B_x\) and \(B_y\) are components of \(\vec{B}\). ### Step 4: Calculate the Dot Product Now, we compute the dot product \(\vec{A} \cdot \vec{B}\): \[ \vec{A} \cdot \vec{B} = (A \cos \theta)(B_x) + (A \sin \theta)(B_y) \] ### Step 5: Set the Dot Product to Zero To satisfy the condition for perpendicularity, we set the dot product to zero: \[ A \cos \theta \cdot B_x + A \sin \theta \cdot B_y = 0 \] ### Step 6: Solve for \(B_y\) in Terms of \(B_x\) Rearranging the equation gives: \[ A \sin \theta \cdot B_y = -A \cos \theta \cdot B_x \] Dividing both sides by \(A\) (assuming \(A \neq 0\)): \[ \sin \theta \cdot B_y = -\cos \theta \cdot B_x \] Thus, we can express \(B_y\) as: \[ B_y = -\frac{\cos \theta}{\sin \theta} B_x = -B_x \cot \theta \] ### Step 7: Choose Specific Values for \(B_x\) For simplicity, we can choose \(B_x = B\) (a constant) and then: \[ B_y = -B \cot \theta \] ### Step 8: Write the Final Form of \(\vec{B}\) Thus, the vector \(\vec{B}\) can be expressed as: \[ \vec{B} = \hat{i} B + \hat{j} \left(-B \cot \theta\right) \] This can also be simplified to: \[ \vec{B} = B \left(\hat{i} - \hat{j} \cot \theta\right) \] ### Conclusion The vector \(\vec{B}\) that is normal to \(\vec{A}\) can be expressed in terms of a constant \(B\): \[ \vec{B} = B \left(\hat{i} - \hat{j} \cot \theta\right) \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BASIC MATHEMATICS & VECTORS

    VMC MODULES ENGLISH|Exercise Impeccable|50 Videos
  • BASIC MATHEMATICS & VECTORS

    VMC MODULES ENGLISH|Exercise Enable|50 Videos
  • CAPACITORS

    VMC MODULES ENGLISH|Exercise JEE Advance ( Archive ) LEVEL 48|1 Videos

Similar Questions

Explore conceptually related problems

let vec a= ( hat i+ hat j+ hat k) then find the unit vector along this vector

If vec(b)=3hat(i)+4hat(j) and vec(a)=hat(i)-hat(j) the vector having the same magnitude as that of vec(b) and parallel to vec(a) is

Knowledge Check

  • If vec(a) = hat(i) + hat(j) + hat(k), vec(a).vec(b) =1 and vec(a) xx vec(b) = hat(j)-hat(k) , then the vector vec(b) is

    A
    `hat(i)-hat(j)+hat(k)`
    B
    ` 2 hat(i)-hat(k)`
    C
    `2 hat(i)`
    D
    `hat(i)`
  • Similar Questions

    Explore conceptually related problems

    Let vec(a) = hat(i) - 2hat(j) + 2hat(k) and vec(b) = 2hat(i) - hat(j) + hat(k) be two vectors. If vec(c) is a vector such that vec(b) xx vec(c) = vec(b) xx vec(a) and vec(c).vec(a) = 1 , then vec(c).vec(b) is equal to :

    Let vec a=2 hat i+ hat k , vec b= hat i+ hat j+ hat ka n d vec c=4 hat i-3 hat j+7 hat k be three vectors. Find vector vec r which satisfies vec rxx vec b= vec cxx vec ba n d vec rdot vec a=0.

    Given vec(A) = 2hat(i) + 3hat(j) and vec(B) = hat(i) + hat(j) . What is the vector component of vec(A) in the direction of vec(B) ?

    If vec(A) = hat(i) + hat(j) + hat(k) and B = -hat(i) - hat(j) - hat(k) . Then angle made by (vec(A) - vec(B)) with vec(A) is :

    Give two vectors vec(A)==3hat(i)+4hat(j) and vec(B)=hat(i)+hat(j).theta is the angle between vec(A) and vec(B) . Which of the following statements is/are correct?

    If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

    Let vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec c= hat i- hat j- hat k be three vectors. A vector vec v in the plane of vec a a n d vec b , whose projection on vec c is 1/(sqrt(3)) is given by a. hat i-3 hat j+3 hat k b. -3 hat i-3 hat j+3 hat k c. 3 hat i- hat j+3 hat k d. hat i+3 hat j-3 hat k