Home
Class 12
PHYSICS
Evaluate: (d)/(dx)((1)/(x))...

Evaluate:
`(d)/(dx)((1)/(x))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the derivative of \( \frac{1}{x} \) with respect to \( x \), we can follow these steps: ### Step 1: Rewrite the function The function \( \frac{1}{x} \) can be rewritten using negative exponents: \[ \frac{1}{x} = x^{-1} \] ### Step 2: Apply the power rule of differentiation Now, we will differentiate \( x^{-1} \) using the power rule. The power rule states that if \( f(x) = x^n \), then \( f'(x) = n \cdot x^{n-1} \). Here, \( n = -1 \): \[ \frac{d}{dx}(x^{-1}) = -1 \cdot x^{-1 - 1} = -1 \cdot x^{-2} \] ### Step 3: Simplify the expression Now, we simplify the expression we obtained: \[ -1 \cdot x^{-2} = -\frac{1}{x^2} \] ### Final Result Thus, the derivative of \( \frac{1}{x} \) with respect to \( x \) is: \[ \frac{d}{dx}\left(\frac{1}{x}\right) = -\frac{1}{x^2} \] ---

To evaluate the derivative of \( \frac{1}{x} \) with respect to \( x \), we can follow these steps: ### Step 1: Rewrite the function The function \( \frac{1}{x} \) can be rewritten using negative exponents: \[ \frac{1}{x} = x^{-1} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Evaluate: (d)/(dx)(x^(1//2))

Evaluate: (d)/(dx)(x^(1//5))

Evaluate: (d)/(dx)(3x^(2))

(d)/(dx)(sin h^(-1)(3x))=

(d)/(dx)[sin^(4)(3x+1)]

If f(x)=x+1 , then write the value of d/(dx)(fof)(x) .

The value of (d)/(dx)(|x-1|+|x-5|) at x=3, is

Find the derivative of (d)/(dx){sin h^(-1)((3x)/(4))}

d/dx((1-cosx)/sinx)=

d/dx((1-cosx)/sinx)=