Home
Class 12
PHYSICS
Evaluate: (d)/(dx)((1)/(x^(3)))...

Evaluate:
`(d)/(dx)((1)/(x^(3)))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the derivative of the function \( \frac{1}{x^3} \) with respect to \( x \), we can follow these steps: ### Step-by-Step Solution: 1. **Rewrite the Function:** The function \( \frac{1}{x^3} \) can be rewritten using negative exponents: \[ \frac{1}{x^3} = x^{-3} \] 2. **Apply the Power Rule:** We will use the power rule of differentiation, which states that if \( f(x) = x^n \), then \( \frac{d}{dx}(x^n) = n \cdot x^{n-1} \). Here, \( n = -3 \): \[ \frac{d}{dx}(x^{-3}) = -3 \cdot x^{-3-1} = -3 \cdot x^{-4} \] 3. **Simplify the Expression:** The expression \( -3 \cdot x^{-4} \) can be rewritten back in terms of positive exponents: \[ -3 \cdot x^{-4} = -\frac{3}{x^4} \] 4. **Final Result:** Therefore, the derivative of \( \frac{1}{x^3} \) with respect to \( x \) is: \[ \frac{d}{dx}\left(\frac{1}{x^3}\right) = -\frac{3}{x^4} \] ### Summary: The derivative of \( \frac{1}{x^3} \) is \( -\frac{3}{x^4} \).

To evaluate the derivative of the function \( \frac{1}{x^3} \) with respect to \( x \), we can follow these steps: ### Step-by-Step Solution: 1. **Rewrite the Function:** The function \( \frac{1}{x^3} \) can be rewritten using negative exponents: \[ \frac{1}{x^3} = x^{-3} ...
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Evaluate: (d)/(dx)(x^(1//2))

Evaluate: (d)/(dx)(x^(1//5))

(d)/(dx)(sin h^(-1)(3x))=

Find the derivative of (d)/(dx){sin h^(-1)((3x)/(4))}

(d)/(dx)[sin^(4)(3x+1)]

The value of (d)/(dx)(|x-1|+|x-5|) at x=3, is

If (d)/(dx)((1+x^2+x^4)/(1+x+x^2)) = a+bx , find the values of a and b .

Differentiate each function by applying the basic rules of differentiation ((1)/(x^(2))+3)((2)/(x^(3))+x)

Differentiate from first principles: 10. (1)/( x^((3)/(2)) )

d/(dx) (sin^(-1) "" (2x)/(1+x^(2))) is equal to