Home
Class 12
PHYSICS
Evaluate: (d)/(dx)(x^(1//5))...

Evaluate:
`(d)/(dx)(x^(1//5))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the derivative of the function \( f(x) = x^{1/5} \), we will use the power rule of differentiation. The power rule states that if \( f(x) = x^n \), then the derivative \( f'(x) \) is given by: \[ f'(x) = n \cdot x^{n-1} \] **Step 1: Identify the exponent.** In our case, the exponent \( n \) is \( \frac{1}{5} \). **Step 2: Apply the power rule.** Using the power rule, we differentiate \( f(x) = x^{1/5} \): \[ \frac{d}{dx}(x^{1/5}) = \frac{1}{5} \cdot x^{(1/5) - 1} \] **Step 3: Simplify the exponent.** Now, we simplify the exponent: \[ (1/5) - 1 = \frac{1}{5} - \frac{5}{5} = -\frac{4}{5} \] So we have: \[ \frac{d}{dx}(x^{1/5}) = \frac{1}{5} \cdot x^{-4/5} \] **Step 4: Rewrite in a more standard form.** We can express \( x^{-4/5} \) as \( \frac{1}{x^{4/5}} \): \[ \frac{d}{dx}(x^{1/5}) = \frac{1}{5} \cdot \frac{1}{x^{4/5}} = \frac{1}{5x^{4/5}} \] Thus, the final result of the differentiation is: \[ \frac{d}{dx}(x^{1/5}) = \frac{1}{5x^{4/5}} \] ---

To evaluate the derivative of the function \( f(x) = x^{1/5} \), we will use the power rule of differentiation. The power rule states that if \( f(x) = x^n \), then the derivative \( f'(x) \) is given by: \[ f'(x) = n \cdot x^{n-1} \] **Step 1: Identify the exponent.** ...
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Evaluate: (d)/(dx)(x^(1//2))

Evaluate: (d)/(dx)(3x^(2))

Evaluate: (d)/(dx)((1)/(x))

Evaluate: (d)/(dx)((1)/(x^(3)))

(d)/(dx)sin(3x+5)

The value of (d)/(dx)(|x-1|+|x-5|) at x=3, is

(d)/(dx)(sin h^(-1)(3x))=

Find the derivative of (d)/(dx){sin h^(-1)((3x)/(4))}

(d)/(dx)[sin^(4)(3x+1)]

If f(x)=x+1 , then write the value of d/(dx)(fof)(x) .