Home
Class 12
MATHS
The series expansion of log{(1+x)^(1+x)(...

The series expansion of `log{(1+x)^(1+x)(1-x)^(1-x)}` is

A

`2{(x^(2))/(1.2)+(x^(4))/(3.4)+(x^(6))/(5.6)+..}`

B

`{(x^(2))/(1.2)+(x^(4))/(3.4)+(x^(6))/(5.6)+..}`

C

`2{(x^(2))/(1.2)+(x^(4))/(2.3)+(x^(6))/(3.4)+..}`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the series expansion of the expression \( \log{(1+x)^{1+x}(1-x)^{1-x}} \), we can follow these steps: ### Step 1: Apply Logarithmic Properties Using the properties of logarithms, we can separate the expression: \[ \log{(1+x)^{1+x}(1-x)^{1-x}} = \log{(1+x)^{1+x}} + \log{(1-x)^{1-x}} \] Using the power property of logarithms, we can rewrite this as: \[ (1+x)\log{(1+x)} + (1-x)\log{(1-x)} \] ### Step 2: Expand the Logarithmic Functions Next, we need to use the Taylor series expansion for \( \log{(1+x)} \) and \( \log{(1-x)} \): \[ \log{(1+x)} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots \] \[ \log{(1-x)} = -\left(x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \cdots\right) \] ### Step 3: Substitute the Expansions Now, substitute these expansions back into our expression: \[ (1+x)\left(x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots\right) + (1-x)\left(-x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \cdots\right) \] ### Step 4: Distribute and Combine Like Terms Distributing the terms gives us: \[ (1+x)\left(x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4}\right) + (1-x)\left(-x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4}\right) \] This results in: \[ x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + x^2 - \frac{x^3}{2} + \frac{x^4}{3} - x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} \] ### Step 5: Simplify the Expression Now, we combine like terms: - The \( x \) terms cancel out. - The \( x^2 \) terms: \( -\frac{x^2}{2} + x^2 - \frac{x^2}{2} = 0 \) - The \( x^3 \) terms: \( \frac{x^3}{3} - \frac{x^3}{2} - \frac{x^3}{3} = -\frac{x^3}{2} \) - The \( x^4 \) terms: \( -\frac{x^4}{4} + \frac{x^4}{3} - \frac{x^4}{4} = -\frac{x^4}{6} \) Thus, the series expansion simplifies to: \[ -\frac{x^3}{2} - \frac{x^4}{6} + \cdots \] ### Final Result The series expansion of \( \log{(1+x)^{1+x}(1-x)^{1-x}} \) is: \[ -\frac{x^3}{2} - \frac{x^4}{6} + \cdots \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|37 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|45 Videos

Similar Questions

Explore conceptually related problems

The coefficient of x^(6) in the expansion of log{(1+x)^(1+x)(1-x)^(1-x) } is

The coefficient of x in the expansion of (1+x)(1+2x)(1+3x)….(1+100x) is :

The coefficient of x^9 in the expansion of (1+x)(1+ x^2)(1+x^3)....(1+x^(100)) is

The coefficient of x^(6) in log[(1+x)^(1+x)(1-x)^(1-x)]=

Assertion (A) : The coefficient of x^(5) in the expansion log_(e ) ((1+x)/(1-x)) is (2)/(5) Reason (R ) : The equality log((1+x)/(1-x))=2[x+(x^(2))/(2)+(x^(3))/(3)+(x^(4))/(4)+….oo] is valid for |x| lt 1

If the third term in the expansion of (1/x+""_"x"(log)_(10 x))^5 is 1000 , then find xdot

The coefficient of x^(10) in the expansion of (1+x)^(15)+(1+x)^(16)+(1+x)^(17)+… +(1+x)^(30)

If |x|lt 1 , tnen the coefficient of x^(5) in the expansion of (1-x)log_(e )(1-x) is

(1+log x)^(2)/(x)

If the fourth term in the expansion of {sqrt(1/(""_"x^log(x+1)"}'+1/(x^12)}^6 is equal to 200 and x >1, then find x