Home
Class 11
MATHS
If n=""^(m)C(2) the valuen of ""^(n)C(2)...

If `n=""^(m)C_(2)` the valuen of `""^(n)C_(2)` is given by

A

`""^(m+1)C_(4)`

B

`""^(m-1)C_(4)`

C

`""^(m+2)C_(4)`

D

none of these

Text Solution

AI Generated Solution

To solve the problem where \( n = \binom{m}{2} \) and we need to find the value of \( \binom{n}{2} \), we can follow these steps: ### Step 1: Understand the given information We know that: \[ n = \binom{m}{2} \] This means that \( n \) is the number of ways to choose 2 items from \( m \) items. ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|9 Videos
  • PERMUTATIONS AND COMBINATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|136 Videos
  • PERMUTATIONS AND COMBINATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • PARABOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • PROBABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|45 Videos

Similar Questions

Explore conceptually related problems

If .^(n)C_(8)=.^(n)C_(6) , then find .^(n)C_(2) .

If .^(n)C_(8) = .^(n)C_(2) , find .^(n)C_(2) .

Knowledge Check

  • If m= ""^(n) C_(2), then ""^(m) C_(2) is equal to

    A
    `3.""^(n) C_(4)`
    B
    `""^(n+1)C_4`
    C
    `3.""^(n+1)C_4`
    D
    `3.""^(n+1)C_3`
  • n points are given of which r points are collinear, then the number of straight lines that can be found = (a) ""^(n)C_(2)-""^(r)C_(2) (b) ""^(n)C_(2)-""^(r)C_(2)+1 (c) ""^(n)C_(2)-""^(r)C_(2)-1 (d) None of these

    A
    `""^(n)C_(2)-""^(r)C_(2)`
    B
    `""^(n)C_(2)-""^(r)C_(2)+1`
    C
    `""^(n)C_(2)-""^(r)C_(2)-1`
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    The value of .^(n)C_(1)+.^(n+1)C_(2)+.^(n+2)C_(3)+"….."+.^(n+m-1)C_(m) is equal to a. .^(m+n)C_(n) - 1 b. .^(m+n)C_(n-1) c. .^(m)C_(1) + ^(m+1)C_(2) + ^(m+2)C_(3) + "…." + ^(m+n-1)C_(n) d. .^(m+n)C_(m) - 1

    The value of ""(n)C_(1). X(1 - x )^(n-1) + 2 . ""^(n)C_(2) x^(2) (1 - x)^(n-2) + 3. ""^(n)C_(3) x^(3) (1 - x)^(n-3) + ….+ n ""^(n)C_(n) x^(n) , n in N is

    Let m, in N and C_(r) = ""^(n)C_(r) , for 0 le r len Statement-1: (1)/(m!)C_(0) + (n)/((m +1)!) C_(1) + (n(n-1))/((m +2)!) C_(2) +… + (n(n-1)(n-2)….2.1)/((m+n)!) C_(n) = ((m + n + 1 )(m+n +2)…(m +2n))/((m +n)!) Statement-2: For r le 0 ""^(m)C_(r)""^(n)C_(0)+""^(m)C_(r-1)""^(n)C_(1) + ""^(m)C_(r-2) ""^(n)C_(2) +...+ ""^(m)C_(0)""^(n)C_(r) = ""^(m+n)C_(r) .

    if .^(2n)C_(2):^(n)C_(2)=9:2 and .^(n)C_(r)=10 , then r is equal to

    Statement -1: sum_(r=0)^(n) r(""^(n)C_(r))^(2) = n (""^(2n -1)C_(n-1)) Statement-2: sum_(r=0)^(n) (""^(n)C_(r))^(2)= ""^(2n)C_(n)

    ((1 + ""^nC_1 + ""^nC_2 + ""^nC_3+…….+nC_n)^2)/(1 + ""^(2n)C_1 + ""^(2n)C_2 + ""^(2n)C_3 + ……… + ""^(2n)C_(2n)) =