Home
Class 11
MATHS
Stetemet - 1: sum(r=0)^(n) r. ""^(n)C(r)...

Stetemet - 1: `sum_(r=0)^(n) r. ""^(n)C_(r) = n 2^(n-1)`
Statement-2: ` sum_(r=0)^(n) r. ""^(n)C_(r) x^(r) = n (1 + x )^(n-1) x`

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to verify the two statements provided: ### Statement 1: \[ \sum_{r=0}^{n} r \cdot \binom{n}{r} = n \cdot 2^{n-1} \] ### Statement 2: \[ \sum_{r=0}^{n} r \cdot \binom{n}{r} \cdot x^r = n \cdot (1 + x)^{n-1} \cdot x \] ### Step-by-Step Solution: **Step 1: Verify Statement 1** We start with the left-hand side of Statement 1: \[ \sum_{r=0}^{n} r \cdot \binom{n}{r} \] Using the identity \( r \cdot \binom{n}{r} = n \cdot \binom{n-1}{r-1} \), we can rewrite the sum: \[ \sum_{r=0}^{n} r \cdot \binom{n}{r} = \sum_{r=1}^{n} n \cdot \binom{n-1}{r-1} \] Notice that when \( r = 0 \), the term is zero, so we can start from \( r = 1 \). **Step 2: Simplify the Sum** We can factor out \( n \): \[ = n \cdot \sum_{r=1}^{n} \binom{n-1}{r-1} \] Changing the index of summation by letting \( k = r - 1 \) (thus \( r = k + 1 \)): \[ = n \cdot \sum_{k=0}^{n-1} \binom{n-1}{k} \] Using the binomial theorem, we know that: \[ \sum_{k=0}^{n-1} \binom{n-1}{k} = 2^{n-1} \] **Step 3: Final Result for Statement 1** Substituting back, we have: \[ \sum_{r=0}^{n} r \cdot \binom{n}{r} = n \cdot 2^{n-1} \] Thus, Statement 1 is **true**. --- **Step 4: Verify Statement 2** Now we check Statement 2: \[ \sum_{r=0}^{n} r \cdot \binom{n}{r} \cdot x^r \] Using the same identity for \( r \): \[ = \sum_{r=1}^{n} n \cdot \binom{n-1}{r-1} \cdot x^r \] Factoring out \( n \): \[ = n \cdot \sum_{r=1}^{n} \binom{n-1}{r-1} \cdot x^r \] Changing the index of summation again by letting \( k = r - 1 \): \[ = n \cdot \sum_{k=0}^{n-1} \binom{n-1}{k} \cdot x^{k+1} \] This can be rewritten as: \[ = n \cdot x \cdot \sum_{k=0}^{n-1} \binom{n-1}{k} \cdot x^k \] Using the binomial theorem: \[ = n \cdot x \cdot (1 + x)^{n-1} \] **Step 5: Final Result for Statement 2** Thus, we conclude that: \[ \sum_{r=0}^{n} r \cdot \binom{n}{r} \cdot x^r = n \cdot (1 + x)^{n-1} \cdot x \] This confirms that Statement 2 is also **true**. ### Conclusion: Both statements are true, and Statement 2 is a correct explanation of Statement 1. ---

To solve the problem, we need to verify the two statements provided: ### Statement 1: \[ \sum_{r=0}^{n} r \cdot \binom{n}{r} = n \cdot 2^{n-1} \] ### Statement 2: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|103 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|100 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos

Similar Questions

Explore conceptually related problems

Statement-1: sum_(r =0)^(n) (r +1)""^(n)C_(r) = (n +2) 2^(n-1) Statement -2: sum_(r =0)^(n) (r+1) ""^(n)C_(r) x^(r) = (1 + x)^(n) + nx (1 + x)^(n-1)

Statement-1 sum_(r=0)^(n) r ""^(n)C_(r) x^(r) (-1)^(r) = nx (1 - x)^(n -1) Statement-2: sum_(r=0)^(n)r ""^(n)C_(r) x^(r) (-1)^(r) =0

Statement -1: sum_(r=0)^(n) r(""^(n)C_(r))^(2) = n (""^(2n -1)C_(n-1)) Statement-2: sum_(r=0)^(n) (""^(n)C_(r))^(2)= ""^(2n)C_(n)

Statement -2: sum_(r=0)^(n) (-1)^( r) (""^(n)C_(r))/(r+1) = (1)/(n+1) Statement-2: sum_(r=0)^(n) (-1)^(r) (""^(n)C_(r))/(r+1) x^(r) = (1)/((n+1)x) { 1 - (1 - x)^(n+1)}

Statement-1: sum_(r=0)^(n) (1)/(r+1) ""^(n)C_(r) = (1)/((n+1)x) {( 1 + x)^(n+1) -1}^(-1) Statement-2: sum_(r=0)^(n) (""^(n)C_(r))/(r+1) = (2^(n+1))/(n+1) .

If a_(n) = sum_(r=0)^(n) (1)/(""^(n)C_(r)) , find the value of sum_(r=0)^(n) (r)/(""^(n)C_(r))

If x + y = 1 , prove that sum_(r=0)^(n) r""^(n)C_(r) x^(r ) y^(n-r) = nx .

sum_(r=0)^(n)(""^(n)C_(r))/(r+2) is equal to :

Prove that sum_(r=0)^(2n) r.(""^(2n)C_(r))^(2)= 2.""^(4n-1)C_(2n-1) .

Statement-1 : sum_(r=0)^(n) r^(2) ""^(n)C_(r) x^(r) = n (n-1) x^(2) (1 + x)^(n-2) + nx (1 +x)^(n-1) Statement-2: sum_(r=0)^(n) r^(2) ""^(n)C_(r) = n (n-1)2^(n-2)+ n2^(n-1) .