Home
Class 11
MATHS
If "log"("cos"x) "tan" x + "log"("sin"x)...

If `"log"_("cos"x) "tan" x + "log"_("sin"x) "cot" x =0,` then x =

A

`n pi + (pi)/(4), n in Z`

B

`2n pi + (pi)/(4), n in Z`

C

`2n pi -(3pi)/(4), n in Z`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_{\cos x} \tan x + \log_{\sin x} \cot x = 0 \), we can follow these steps: ### Step 1: Rewrite the logarithmic expressions Using the property of logarithms, we can rewrite \( \log_{\sin x} \cot x \) as \( \log_{\sin x} \frac{1}{\tan x} \): \[ \log_{\sin x} \cot x = \log_{\sin x} \frac{1}{\tan x} = -\log_{\sin x} \tan x \] Thus, the equation becomes: \[ \log_{\cos x} \tan x - \log_{\sin x} \tan x = 0 \] ### Step 2: Combine the logarithmic terms We can combine the logarithmic terms: \[ \log_{\cos x} \tan x = \log_{\sin x} \tan x \] This implies: \[ \frac{\tan x}{\cos x} = \tan x \] ### Step 3: Simplify the equation This can be simplified to: \[ \frac{\tan x}{\cos x} = \tan x \implies \tan x \cdot \cos x = \tan x \] Assuming \( \tan x \neq 0 \), we can divide both sides by \( \tan x \): \[ \cos x = 1 \] ### Step 4: Solve for \( x \) The equation \( \cos x = 1 \) holds true when: \[ x = 2n\pi \quad (n \in \mathbb{Z}) \] This means \( x \) can take values like \( 0, 2\pi, 4\pi, \ldots \) ### Step 5: Check for additional solutions We also need to consider the case when \( \tan x = 0 \): \[ \tan x = 0 \implies x = n\pi \quad (n \in \mathbb{Z}) \] This means \( x \) can also take values like \( 0, \pi, 2\pi, \ldots \) ### Conclusion Thus, the general solutions for \( x \) are: \[ x = n\pi \quad (n \in \mathbb{Z}) \]

To solve the equation \( \log_{\cos x} \tan x + \log_{\sin x} \cot x = 0 \), we can follow these steps: ### Step 1: Rewrite the logarithmic expressions Using the property of logarithms, we can rewrite \( \log_{\sin x} \cot x \) as \( \log_{\sin x} \frac{1}{\tan x} \): \[ \log_{\sin x} \cot x = \log_{\sin x} \frac{1}{\tan x} = -\log_{\sin x} \tan x \] Thus, the equation becomes: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

The solution of the equation "log"_("cos"x) "sin" x + "log"_("sin"x) "cos" x = 2 is given by

If "log"_(2) "sin" x - "log"_(2) "cos" x - "log"_(2) (1-"tan"^(2) x) =-1 , then x =

The solution set of the inequation "log"_(1//2) "sin" x gt "log"_(1//2) "cos" x "in" [0, 2pi] , is

For 0 lt x lt (pi)/(2) , let P_(mn)(x)=m log_(cos x) ( sin x)+ n log_(cos x)(cotx) , where m, n in {1, 2,...,9} [For example: P_(29)(x)=2log_(cosx)(sinx)+9log_(cos x)( cot x) and " " P_(77)(x)=7 log_(cos x)(sin x)+(7 log_(cos x) ( cot x) ] On the basis of above information, answer the following questions : If P_(34)(x)=P_(22)(x) , then the value of sin x is expressed as ((sqrt(q)-1)/(p)) , then (p+q) equals

lim_{x \to 0} log x/cot x = 0

If "log"_(x){"log"_(4)("log"_(x)(5x^(2) +4x^(3)))} =0 , then

If log_(3) sin x-log_(3) cos x-log_(3)(1- tan x)-log_(3)(1+tan x)= -1 , then tan2x is equal to (wherever defined)

The number of solutions of "log"_("sin"x)(2^(" tan"x)) gt 0 in the interval (0, pi//2) is

If "log"_(10) sin x+"log"_(10)cos x=-1 and "log"_(10)(sin x+cosx)=(("log"_(10)n)n-1)/(2) then the value of n is ____________

Number of integral solution of the equation log_(sin x) sqrt(sin^(2)x)+ log_(cos x)sqrt( cos^(2)x)= , where x in [0,6pi] is