Home
Class 12
MATHS
The arithmetic mean of ""^(n)C(0),""^(n)...

The arithmetic mean of `""^(n)C_(0),""^(n)C_(1),""^(n)C_(2), ..., ""^(n)C_(n)`, is

A

`(1)/(n)`

B

`(2^(n))/(n)`

C

`(2^(n-1))/(n)`

D

`(2^(n+1))/(n)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the arithmetic mean of the binomial coefficients \( \binom{n}{0}, \binom{n}{1}, \binom{n}{2}, \ldots, \binom{n}{n} \), we can follow these steps: ### Step 1: Understand the formula for the arithmetic mean The arithmetic mean (average) is calculated using the formula: \[ \text{Mean} = \frac{\text{Sum of observations}}{\text{Total number of observations}} \] ### Step 2: Identify the observations The observations in this case are the binomial coefficients: \[ \binom{n}{0}, \binom{n}{1}, \binom{n}{2}, \ldots, \binom{n}{n} \] ### Step 3: Calculate the total number of observations The total number of observations is the number of binomial coefficients from \( \binom{n}{0} \) to \( \binom{n}{n} \). Since the coefficients start from 0 and go up to \( n \), there are \( n + 1 \) observations. ### Step 4: Calculate the sum of the observations The sum of all the binomial coefficients from \( \binom{n}{0} \) to \( \binom{n}{n} \) can be calculated using the identity: \[ \sum_{k=0}^{n} \binom{n}{k} = 2^n \] Thus, the sum of observations is: \[ \text{Sum} = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \ldots + \binom{n}{n} = 2^n \] ### Step 5: Substitute into the mean formula Now, we can substitute the sum and the total number of observations into the mean formula: \[ \text{Mean} = \frac{2^n}{n + 1} \] ### Final Result Thus, the arithmetic mean of \( \binom{n}{0}, \binom{n}{1}, \ldots, \binom{n}{n} \) is: \[ \text{Mean} = \frac{2^n}{n + 1} \] ---

To find the arithmetic mean of the binomial coefficients \( \binom{n}{0}, \binom{n}{1}, \binom{n}{2}, \ldots, \binom{n}{n} \), we can follow these steps: ### Step 1: Understand the formula for the arithmetic mean The arithmetic mean (average) is calculated using the formula: \[ \text{Mean} = \frac{\text{Sum of observations}}{\text{Total number of observations}} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

The arithmetic mean of the following frequency distribution: {:("Variate(X)" ,:,0,1,2,3, ..., n),("Frequency" (f),:,""^(n)C_(0),""^(n)C_(1),""^(n)C_(2),""^(n)C_(3),...,""^(n)C_(n)):} is

The value of ""^(n)C_(n)+""^(n+1)C_(n)+""^(n+2)C_(n)+….+""^(n+k)C_(n) :

The A.M. of the series .^(n)C_(0), .^(n)C_(1), .^(n)C_(2),….,.^(n)C_(n) is

If a variable x takes values 0,1,2,..,n with frequencies proportional to the binomial coefficients .^(n)C_(0),.^(n)C_(1),.^(n)C_(2),..,.^(n)C_(n) , then var (X) is

If n is even and ""^(n)C_(0)lt""^(n)C_(1) lt ""^(n)C_(2) lt ....lt ""^(n)C_(r) gt ""^(n)C_(r+1) gt""^(n)C_(r+2) gt......gt""^(n)C_(n) , then, r=

If ""(n)C_(0), ""(n)C_(1), ""(n)C_(2), ...., ""(n)C_(n), denote the binomial coefficients in the expansion of (1 + x)^(n) and p + q =1 sum_(r=0)^(n) r^(2 " "^n)C_(r) p^(r) q^(n-r) = .

If the value of "^(n)C_(0)+2*^(n)C_(1)+3*^(n)C_(2)+...+(n+1)*^(n)C_(n)=576 , then n is (a) 7 (b) 5 (c) 6 (d) 9

If S=Sigma_(n=1)^(oo) (""^(n)C_(0)+""^(n)C_(1)+""^(n)c_(2)+..+""^(n)C_(n))/(""^(n)P_(n)) then S equals

sum_(n=1)^(oo) (""^(n)C_(0) + ""^(n)C_(1) + .......""^(n)C_(n))/(n!) is equal to

The coefficient of x^(n) in the polynomial (x+""^(2n+1)C_(0))(X+""^(2n+1)C_(1)) (x+""^(2n+1)C_(2))……(X+""^(2n+1)C_(n)) is