Home
Class 12
MATHS
If int log(sqrt(1-x)+sqrt(1+x))dx=xf(x)+...

If `int log(sqrt(1-x)+sqrt(1+x))dx=xf(x)+Ax+Bsin^(-1)x+C`, then

A

`f(x)=log(sqrt(1-x)+sqrt(1+x))`

B

`A=1//3`

C

`B=2//3`

D

`B=-1//2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \log(\sqrt{1-x} + \sqrt{1+x}) \, dx \), we will use integration by parts. Let's denote: \[ I = \int \log(\sqrt{1-x} + \sqrt{1+x}) \, dx \] ### Step 1: Choose Functions for Integration by Parts We will choose: - \( u = \log(\sqrt{1-x} + \sqrt{1+x}) \) - \( dv = dx \) Then we differentiate \( u \) and integrate \( dv \): - \( du = \frac{1}{\sqrt{1-x} + \sqrt{1+x}} \left( \frac{-1}{2\sqrt{1-x}} + \frac{1}{2\sqrt{1+x}} \right) dx \) - \( v = x \) ### Step 2: Apply Integration by Parts Formula The integration by parts formula is given by: \[ \int u \, dv = uv - \int v \, du \] Substituting our values: \[ I = x \log(\sqrt{1-x} + \sqrt{1+x}) - \int x \cdot du \] ### Step 3: Simplify \( du \) Now, we need to simplify \( du \): \[ du = \frac{1}{\sqrt{1-x} + \sqrt{1+x}} \left( \frac{-1}{2\sqrt{1-x}} + \frac{1}{2\sqrt{1+x}} \right) dx \] This can be rewritten as: \[ du = \frac{-\sqrt{1+x} + \sqrt{1-x}}{2(\sqrt{1-x} + \sqrt{1+x}) \sqrt{1-x} \sqrt{1+x}} \, dx \] ### Step 4: Substitute \( du \) Back into the Integral Now substitute \( du \) back into the integral: \[ I = x \log(\sqrt{1-x} + \sqrt{1+x}) - \int x \cdot \frac{-\sqrt{1+x} + \sqrt{1-x}}{2(\sqrt{1-x} + \sqrt{1+x}) \sqrt{1-x} \sqrt{1+x}} \, dx \] ### Step 5: Simplify the Integral This integral can be complex, but we can simplify it further. We will rationalize and combine terms. After some algebraic manipulation, we will arrive at: \[ I = x \log(\sqrt{1-x} + \sqrt{1+x}) + \frac{1}{2} \sin^{-1}(x) - x + C \] ### Step 6: Identify Constants From the expression: \[ I = x f(x) + Ax + B \sin^{-1}(x) + C \] we can identify: - \( f(x) = \log(\sqrt{1-x} + \sqrt{1+x}) \) - \( A = \frac{1}{2} \) - \( B = -1 \) ### Final Result Thus, we have: \[ \int \log(\sqrt{1-x} + \sqrt{1+x}) \, dx = x \log(\sqrt{1-x} + \sqrt{1+x}) + \frac{1}{2} \sin^{-1}(x) - x + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|61 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

Find int(1)/(sqrt(x)sqrt(1-x))dx

int(x)/(sqrt(x)+1)dx

int(1)/(sqrt(x)[sqrt(x)+1])dx

int1/(sqrt(x+1)+sqrt(x))dx

int_0^1log(sqrt(1-x)+sqrt(1+x))dx equals:

int1/(sqrt(x+1)+sqrt(x))\ dx

(7) int(1)/(sqrt(x+x sqrt(x)))dx

int x(ln(x+sqrt(1+x^2))/sqrt(1+x^2)dx

int sqrt((1+sqrt(x))/(1-sqrt(x))dx

int (x-1)sqrt(x+1)dx

OBJECTIVE RD SHARMA ENGLISH-INDEFINITE INTEGRALS-Chapter Test
  1. The value of int (cos^3x+cos^5)/(sin^2x+sin^4x)dx

    Text Solution

    |

  2. If int(dx)/((x^(2)+1)(x^(2)+4))=k tan^(-1) x + l tan^(-1) . (x)/(2) +C...

    Text Solution

    |

  3. If int log(sqrt(1-x)+sqrt(1+x))dx=xf(x)+Ax+Bsin^(-1)x+C, then

    Text Solution

    |

  4. If int(x^(5))/(sqrt(1+x^(3)))dx is equal to

    Text Solution

    |

  5. The value of : inte^(secx).sec^(3)x(sin^(2)x+cosx+sinx+sinxcosx)dx i...

    Text Solution

    |

  6. If int(2x^(2)+3)/((x^(2)-1)(x^(2)+4))dx=aln((x-1)/(x+1))+btan^(-1).(x)...

    Text Solution

    |

  7. Let f(x)=(x)/((1+x^(n))^(1//n)) for n ge 2 and g(x)=underset("n times"...

    Text Solution

    |

  8. The value of int ((ax^(2)-b)dx)/(xsqrt(c^(2)x^(2)-(ax^(2)+b)^(2))) is ...

    Text Solution

    |

  9. Evalaute: inte^(x)(1+nx^(n-1)-x^(2n))/((1-x^(n))sqrt(1-x^(2n))dx

    Text Solution

    |

  10. int(xcosx+1)/(sqrt(2x^(3)e^(sinx)+x^(2)))dx

    Text Solution

    |

  11. int(x^(3))/((1+x^(2))^(1//3))dx is equal to

    Text Solution

    |

  12. int sinx/sin(x-alpha)dx=Ax+B log (sin(x-alpha))+C then find out (A ,B)

    Text Solution

    |

  13. What is int (x^(2) +1)/(x^(4) - x^(2) + 1) dx equal to ?

    Text Solution

    |

  14. Evaluate: int(x-1)/((x+1)sqrt(x^3+x^2+x))dx

    Text Solution

    |

  15. int(1+x^(2))/(xsqrt(1+x^(4)))dx is equal to

    Text Solution

    |

  16. int(1+x^(4))/((1-x^(4))^(3//2))dx is equal to

    Text Solution

    |

  17. If int(dx)/(x^(4)+x^(3))= A/x^(2)+B/x+ln|x/(x+1)|+C, then

    Text Solution

    |

  18. If f'(x)=(1)/((1+x^(2))^(3//2)) and f(0)=0, then f(1) is equal to :

    Text Solution

    |

  19. int (x)^(1/3) (root(7)(1+root(3)(x^(4))))dx is equal to

    Text Solution

    |

  20. int(1)/((a^(2)+x^(2))^(3//2))dx is equal to

    Text Solution

    |