Home
Class 12
MATHS
If f(x)=log(e)[log(e)x], then what is f'...

If `f(x)=log_(e)[log_(e)x]`, then what is f' (e) equal to?

A

0

B

1

C

`1//e`

D

`e//2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative of the function \( f(x) = \log_e(\log_e x) \) and evaluate it at \( x = e \). ### Step-by-Step Solution: 1. **Identify the function**: \[ f(x) = \log_e(\log_e x) \] 2. **Differentiate using the chain rule**: We will apply the chain rule to differentiate \( f(x) \). The derivative of \( \log_e u \) is \( \frac{1}{u} \cdot \frac{du}{dx} \). Let \( u = \log_e x \). Then, \[ f(x) = \log_e(u) \] The derivative \( f'(x) \) is: \[ f'(x) = \frac{1}{u} \cdot \frac{du}{dx} \] 3. **Find \( \frac{du}{dx} \)**: The derivative of \( u = \log_e x \) is: \[ \frac{du}{dx} = \frac{1}{x} \] 4. **Substituting back into the derivative**: Now substitute \( u \) back into the derivative: \[ f'(x) = \frac{1}{\log_e x} \cdot \frac{1}{x} \] Therefore, \[ f'(x) = \frac{1}{x \log_e x} \] 5. **Evaluate \( f'(e) \)**: Now we need to evaluate \( f'(x) \) at \( x = e \): \[ f'(e) = \frac{1}{e \log_e e} \] Since \( \log_e e = 1 \): \[ f'(e) = \frac{1}{e \cdot 1} = \frac{1}{e} \] ### Final Answer: Thus, \( f'(e) = \frac{1}{e} \). ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If phi(x)=log_(8)log_(3)x , then phi'(e ) is equal to

If f(x)=|log_(e) x|,then

Knowledge Check

  • If f(x)=log_(x^(2))(logx) ,then f '(x)at x= e is

    A
    0
    B
    1
    C
    `(1)/(e )`
    D
    `(1)/(2e)`
  • Similar Questions

    Explore conceptually related problems

    If f(x)=|log_(e)|x||," then "f'(x) equals

    If f(x)=log_(x) (log x)," then find "f'(x) at x= e

    If f(x) =|log_(e)|x||, then f'(x) equals

    If f(x)=log_(e)(log_(e)x)/log_(e)x then f'(x) at x = e is

    f(x)=log_(e)abs(log_(e)x) . Find the domain of f(x).

    If f(x)=log_x(lnx) then f'(x) at x=e is

    If f(x)=(log)_e((log)_e x) , then write the value of f^(prime)(e) .