Home
Class 12
MATHS
If f(x)=log(e)[log(e)x], then what is f'...

If `f(x)=log_(e)[log_(e)x]`, then what is f' (e) equal to?

A

0

B

1

C

`1//e`

D

`e//2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative of the function \( f(x) = \log_e(\log_e x) \) and evaluate it at \( x = e \). ### Step-by-Step Solution: 1. **Identify the function**: \[ f(x) = \log_e(\log_e x) \] 2. **Differentiate using the chain rule**: We will apply the chain rule to differentiate \( f(x) \). The derivative of \( \log_e u \) is \( \frac{1}{u} \cdot \frac{du}{dx} \). Let \( u = \log_e x \). Then, \[ f(x) = \log_e(u) \] The derivative \( f'(x) \) is: \[ f'(x) = \frac{1}{u} \cdot \frac{du}{dx} \] 3. **Find \( \frac{du}{dx} \)**: The derivative of \( u = \log_e x \) is: \[ \frac{du}{dx} = \frac{1}{x} \] 4. **Substituting back into the derivative**: Now substitute \( u \) back into the derivative: \[ f'(x) = \frac{1}{\log_e x} \cdot \frac{1}{x} \] Therefore, \[ f'(x) = \frac{1}{x \log_e x} \] 5. **Evaluate \( f'(e) \)**: Now we need to evaluate \( f'(x) \) at \( x = e \): \[ f'(e) = \frac{1}{e \log_e e} \] Since \( \log_e e = 1 \): \[ f'(e) = \frac{1}{e \cdot 1} = \frac{1}{e} \] ### Final Answer: Thus, \( f'(e) = \frac{1}{e} \). ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If phi(x)=log_(8)log_(3)x , then phi'(e ) is equal to

If f(x)=|log_(e) x|,then

If f(x)=|log_(e)|x||," then "f'(x) equals

If f(x)=log_(x) (log x)," then find "f'(x) at x= e

If f(x) =|log_(e)|x||, then f'(x) equals

If f(x)=log_(e)(log_(e)x)/log_(e)x then f'(x) at x = e is

f(x)=log_(e)abs(log_(e)x) . Find the domain of f(x).

If f(x)=log_x(lnx) then f'(x) at x=e is

If f(x)=(log)_e((log)_e x) , then write the value of f^(prime)(e) .

If f(x)=log_(x^(2))(logx) ,then f '(x)at x= e is

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Chapter Test
  1. If f(x)=log(e)[log(e)x], then what is f' (e) equal to?

    Text Solution

    |

  2. If e^y+xy=e then the value of (d^2y)/(dx^2) for x=0 is

    Text Solution

    |

  3. If sqrt(x+y) +sqrt(y-x)=5, then (d^(2)y)/(dx ^(2))=

    Text Solution

    |

  4. "If "ax^(2)+2hxy+by^(2)=1," then "(d^(2)y)/(dx^(2)) is

    Text Solution

    |

  5. If f(x)=sin{(pi)/(2)[x]-x^(5)},1ltxlt2 and [.] denotes the greatest in...

    Text Solution

    |

  6. f(x) is a polynomial of degree

    Text Solution

    |

  7. If y=sin(log(e)x), then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx) is equal to

    Text Solution

    |

  8. If f(x)=(1-x)^n, then the value of f(0)+f^(prime)(0)+(f^('')(0))/(2!)+...

    Text Solution

    |

  9. "If "xsqrt(1+y)+ysqrt(1+x)=0," prove that "(dy)/(dx)=-(1)/((x+1)^(2)).

    Text Solution

    |

  10. If 8f(x)+6f(1/x)=x+5 and y=x^2(f(x), then (dy)/(dx) at x=-1 is equal t...

    Text Solution

    |

  11. If y=sin^(-1){(5x+12 sqrt(1-x^(2)))/(13)}, find (dy)/(dx).

    Text Solution

    |

  12. If f(x)=cos^(-1){(1-(log(e)x)^(2))/(1+(log(e)x)^(2))}, then f'( e )

    Text Solution

    |

  13. y=sin^(-1)[sqrt(x-ax)-sqrt(a-ax)]

    Text Solution

    |

  14. Let f(x)=(x^3+2)^(30) If f^n (x) is a polynomial of degree 20 where f^...

    Text Solution

    |

  15. If f(x)=cos^(2)x+cos^(2)(x+(pi)/(3))+sinxsin(x+(pi)/(3)) and g((5)/(4)...

    Text Solution

    |

  16. If f(x)=10cosx+(13+2x)sinx then f''(x)+f(x)=

    Text Solution

    |

  17. Let a function f:RtoR satisfy the equation f(x+y)=f(x)=f(Y)AAx, yepsil...

    Text Solution

    |

  18. If f(x)=log{(u(x))/(v(x))},\ u(1)=v(1) and u^(prime)(1)=v^(prime)(1)=2...

    Text Solution

    |

  19. If f'(x)=arc tan((x^(x)-x^(-x))/(2)), then f'(1) is equal to

    Text Solution

    |

  20. Let f(x)=2^(2x-1)" and "g(x)=-2^(x)+2xlog2. Then the set of points sat...

    Text Solution

    |