A
B
C
D
Text Solution
AI Generated Solution
The correct Answer is:
Topper's Solved these Questions
INVERSE TRIGONOMETRIC FUNCTIONS
OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 VideosINVERSE TRIGONOMETRIC FUNCTIONS
OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|11 VideosINDEFINITE INTEGRALS
OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 VideosLIMITS
OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
Similar Questions
Explore conceptually related problems
OBJECTIVE RD SHARMA ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS -Exercise
- Prove that 3 tan^(-1) x= {(tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if ...
Text Solution
|
- If 0 le x lt oo, then cos^(-1)((1-x^(2))/(1+x^(2))) equals
Text Solution
|
- If -oo lt x le 0 then cos ^(-1)((1-x^(2))/(1+x^(2)))equals
Text Solution
|
- If x in [-1,1] then sin^(-1)((2x)/(1+x^(2))) equals
Text Solution
|
- If x in (1,oo) then sin^(-1)((2x)/(1+x^(2))) equals
Text Solution
|
- If x in (-oo,-1) then sin^(-1)((2x)/(1+x^(2))) equals
Text Solution
|
- If sin^(-1)((2x)/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2)))=4 tan^(-1) x...
Text Solution
|
- If 1 tan^(-1) x + sin^(-1).(2x)/(1 + x^(2)) is independent of x, then
Text Solution
|
- If tan^(-1) x + tan^(-1)y + tan^(-1)z= pi then x + y + z is equal to
Text Solution
|
- The value of cos(tan^-1 (tan 2)) is
Text Solution
|
- If sec^(-1) x = cosec^(-1) y, then find the value of cos^(-1).(1)/(x) ...
Text Solution
|
- Let cos(2 tan^(-1) x)=1/2 then the value of x is
Text Solution
|
- If tan^(-1) . x/pi lt pi/3 , x in N , then the maximum value of x is
Text Solution
|
- Range of the function f(x)= cos^(-1)(-{x}) , where {.} is fractional...
Text Solution
|
- sec^(-1)(sin x) exist if
Text Solution
|
- cot((pi)/(4)-2 cot^(-1)3) is :
Text Solution
|
- Solve [cot^(-1) x] + [cos^(-1) x] =0, where [.] denotes the greatest i...
Text Solution
|
- Find the sum cot^(-1) 2 + cot^(-1) 8 + cot^(-1) 18 + ...oo
Text Solution
|
- If cos^(-1)(x)/(2)+cos^(-1)(y)/(3)=theta then the maximum of 9x^(2)-12...
Text Solution
|
- If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi , prove that: xsqrt(1-x^2)+ysqrt(1...
Text Solution
|