Home
Class 12
MATHS
If omega is a complex cube root of unity...

If `omega` is a complex cube root of unity, then arg `(iomega) + "arg" (iomega^(2))=`

A

0

B

`pi//2`

C

`pi`

D

`pi//4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of the arguments of \(i\omega\) and \(i\omega^2\), where \(\omega\) is a complex cube root of unity. The cube roots of unity are given by: \[ \omega = e^{2\pi i / 3} = -\frac{1}{2} + \frac{\sqrt{3}}{2} i \] \[ \omega^2 = e^{4\pi i / 3} = -\frac{1}{2} - \frac{\sqrt{3}}{2} i \] ### Step 1: Find \(\arg(i\omega)\) We start with \(i\omega\): \[ i\omega = i\left(-\frac{1}{2} + \frac{\sqrt{3}}{2} i\right) = -\frac{1}{2}i - \frac{\sqrt{3}}{2} \] In Cartesian coordinates, this can be represented as: \[ \text{Re} = -\frac{\sqrt{3}}{2}, \quad \text{Im} = -\frac{1}{2} \] To find the argument, we use: \[ \arg(i\omega) = \tan^{-1}\left(\frac{\text{Im}}{\text{Re}}\right) = \tan^{-1}\left(\frac{-\frac{1}{2}}{-\frac{\sqrt{3}}{2}}\right) = \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) \] This gives us: \[ \arg(i\omega) = \frac{\pi}{6} \] Since both the real and imaginary parts are negative, \(i\omega\) lies in the third quadrant, so we adjust the argument: \[ \arg(i\omega) = \pi + \frac{\pi}{6} = \frac{7\pi}{6} \] ### Step 2: Find \(\arg(i\omega^2)\) Next, we calculate \(i\omega^2\): \[ i\omega^2 = i\left(-\frac{1}{2} - \frac{\sqrt{3}}{2} i\right) = -\frac{1}{2}i + \frac{\sqrt{3}}{2} \] In Cartesian coordinates, this can be represented as: \[ \text{Re} = \frac{\sqrt{3}}{2}, \quad \text{Im} = -\frac{1}{2} \] To find the argument: \[ \arg(i\omega^2) = \tan^{-1}\left(\frac{\text{Im}}{\text{Re}}\right) = \tan^{-1}\left(\frac{-\frac{1}{2}}{\frac{\sqrt{3}}{2}}\right) = \tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) \] This gives us: \[ \arg(i\omega^2) = -\frac{\pi}{6} \] Since the real part is positive and the imaginary part is negative, \(i\omega^2\) lies in the fourth quadrant, so the argument remains: \[ \arg(i\omega^2) = -\frac{\pi}{6} \] ### Step 3: Sum the arguments Now we sum the two arguments: \[ \arg(i\omega) + \arg(i\omega^2) = \frac{7\pi}{6} - \frac{\pi}{6} = \frac{6\pi}{6} = \pi \] ### Final Answer Thus, the final answer is: \[ \arg(i\omega) + \arg(i\omega^2) = \pi \] ---

To solve the problem, we need to find the sum of the arguments of \(i\omega\) and \(i\omega^2\), where \(\omega\) is a complex cube root of unity. The cube roots of unity are given by: \[ \omega = e^{2\pi i / 3} = -\frac{1}{2} + \frac{\sqrt{3}}{2} i \] \[ \omega^2 = e^{4\pi i / 3} = -\frac{1}{2} - \frac{\sqrt{3}}{2} i \] ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|141 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

If omega is a cube root of unity, then 1+omega = …..

If omega is a cube root of unity, then omega^(3) = ……

If omega is a complex cube root of unity, then (1-omega+omega^(2))^(6)+(1-omega^(2)+omega)^(6)=

If omega is a cube root of unity, then omega + omega^(2)= …..

If omega is a cube root of unity, then 1+ omega^(2)= …..

If omega is a complex cube root of unity then (1-omega+omega^2)(1-omega^2+omega^4)(1-omega^4+omega^8)(1-omega^8+omega^16)

If 1,x_(1),x_(2),x_(3) are the roots of x^(4)-1=0andomega is a complex cube root of unity, find the value of ((omega^(2)-x_(1))(omega^(2)-x_(2))(omega^(2)-x_(3)))/((omega-x_(1))(omega-x_(2))(omega-x_(3)))

If omega is a complex cube root of unity, then the equation |z- omega|^2+|z-omega^2|^2=lambda will represent a circle, if

If omega is the complex cube root of unity, then the value of omega+omega ^(1/2+3/8+9/32+27/128+………..) ,

If omega is a complex cube root of unity, then the equation |z- omega|^2+|z-omega^2|^2=lambda will represent a circle, if lambda Is

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Chapter Test
  1. If omega is a complex cube root of unity, then arg (iomega) + "arg" (i...

    Text Solution

    |

  2. The locus of the center of a circle which touches the circles |z-z1|=a...

    Text Solution

    |

  3. Prove that for positive integers n(1) and n(2), the value of express...

    Text Solution

    |

  4. The value of abs(sqrt( 2i) - sqrt(2i)) is :

    Text Solution

    |

  5. Prove that the triangle formed by the points 1,(1+i)/(sqrt(2)),a n di ...

    Text Solution

    |

  6. The value of ((1+ i sqrt(3))/(1-isqrt(3)))+ ((1-isqrt(3))/(1+isqrt(3)...

    Text Solution

    |

  7. If alpha+ibeta=tan^(-1) (z), z=x+iy and alpha is constant, the locus o...

    Text Solution

    |

  8. If cosA+cosB+cosC=0,sinA+sinB+sinC=0andA+B+C=180^(@) then the value of...

    Text Solution

    |

  9. Find the sum 1xx(2-omega)xx(2-omega^(2))+2xx(-3-omega)xx(3-omega^(2))+...

    Text Solution

    |

  10. The value of the expression (1+(1)/(omega))+(1+(1)/(omega^(2)))+(2+(1)...

    Text Solution

    |

  11. The condition that x^(n+1)-x^(n)+1 shall be divisible by x^(2)-x+1 is ...

    Text Solution

    |

  12. The expression (1+i)^(n1)+(1+i^(3))^(n2) is real iff

    Text Solution

    |

  13. If |{:(6i,3i,1),(4,3i,-1),(20,3,i):}|=x+iy, then (x, y) is equal to

    Text Solution

    |

  14. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0,t h e nt ...

    Text Solution

    |

  15. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0,t h e nt ...

    Text Solution

    |

  16. Sum of the series sum(r=0)^n (-1)^r ^nCr[i^(5r)+i^(6r)+i^(7r)+i^(8r)] ...

    Text Solution

    |

  17. If az(1)+bz(2)+cz(3)=0 for complex numbers z(1),z(2),z(3) and real num...

    Text Solution

    |

  18. If 2z1-3z2 + z3=0, then z1, z2 and z3 are represented by

    Text Solution

    |

  19. If Re((z+4)/(2z-1)) = 1/2 then z is represented by a point lying on

    Text Solution

    |

  20. The vertices of a square are z(1),z(2),z(3) and z(4) taken in the anti...

    Text Solution

    |

  21. Let lambda in R . If the origin and the non-real roots of 2z^2+2z+lam...

    Text Solution

    |