Home
Class 12
MATHS
Statement -1:If e^{("sin"^(2)x + "si...

Statement -1:If
`e^{("sin"^(2)x + "sin"^(4)x + "sin"^(6)x +…)"log"_(e)2] ` satisfie the equation `x^(2)-9x +8=0`, "then " `(cosx)/(cosx + sinx) = (sqrt(3)-1)/(2), 0 lt x lt (pi)/(2)`.
Statement-2: The sum `sin^(2) x + sin^(4)x + sin^(6) x + .... oo` is equal to `tan^(2)x`

A

Statement -1 is true, Statement-2 is true, Statement -2 is a correct explanation for Statement-1.

B

Statement -1 is True, Statement-2 is True, Statement -2 is not a correct explanation for Statement -1.

C

Statement-1 is True, Statement-2 is False.

D

Statement -1 is False, Statement-2 is True.

Text Solution

Verified by Experts

The correct Answer is:
A

We have,
`"sin"^(2)x + "sin"^(4)x + "sin"^(6)x + … "in"f= ("sin"^(2)x)/(1-"sin"^(2)x) = "tan"^(2) x`
So, statement -2 is true.
Using statement -2, we have
`"exp"{"(sin"^(2)x + "sin"^(4)x + "sin"^(6)x +…)"log"_(e)2]`
` =e^(("tan"^(2)x) "log"_(e)2) = 2^("tan"^(2)x)`
It is given that `2^("tan"^(2)x)` satisfies the equation `x^(2) -9x + 8=0`
`therefore 2^("tan"^(2)x) = 2^(3) "or" 2^("tan"^(2)x) = 1`
`rArr "tan"^(2) x = 3 "or tan"^(2)x =0`
`rArr "tan" x = sqrt(3) rArr x = (pi)/(3) " " [because 0 le x le (pi)/(2)]`
`therefore ("cos"x)/("cos" x + "sin"x) = (1)/( 1 +"tan"x) = (1)/(1+sqrt(3)) = (sqrt(3)-1)/(2)`
So, statement-1 is true. Also, statement -2 is a correct explanation for statement-1.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

Solve for x , sin x = ( -sqrt3)/(2), (0 lt x lt 2pi).

If exp [(sin^(2)x+sin^(4) x +sin^(6)x+.... oo)" In" 2] satisfies the equation y^(2)-9y+8=0 , then the value of (cos x )/( cos x+ sin x ),0 lt x lt (pi)/(2) , is

If 0ltxlt(pi)/(2) exp [(sin^(2)x+sin^(4)x+sin^(6)x+'.....+oo)log_(e)2] satisfies the quadratic equation x^(2)-9x+8=0 , find the value of (sinx-cosx)/(sinx+cosx) .

If cos x + sin x = a , (- (pi)/(2) lt x lt - (pi)/(4)) , then cos 2 x is equal to

Prove that : sin^(2) 6x - sin^(2)4x = sin 2x *sin10x

Solve : cos 3x + cos 2x = sin ""(3)/(2) x + sin "" (1)/(2) x, 0 lt x le pi.

int(cos2x)/((e^(-x)+cosx)sqrt(1+sin2x))dx,x in(0,(pi)/(2)) is equal to

Number of solutions of the equation cos^(4) 2x+2 sin^(2) 2x =17 (cos x + sin x)^(8), 0 lt x lt 2 pi is

The value of int_(0)^(pi)(|x|sin^(2)x)/(1+2|cosx|sinx)dx is equal to

Prove that : sin^2 6x-sin^2 4x=sin 2x\ sin\ 10 x