Home
Class 11
MATHS
If f(x)=x and g(x)=|x|, then define the ...

If `f(x)=x and g(x)=|x|`, then define the following functions:
`(i) f+g " "(ii) f-g`
`(iii) f*g" "(iv) (f)/(g)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to define the functions \( f + g \), \( f - g \), \( f \cdot g \), and \( \frac{f}{g} \) given that \( f(x) = x \) and \( g(x) = |x| \). ### Step-by-Step Solution: 1. **Define \( f + g \)**: \[ f + g = f(x) + g(x) = x + |x| \] - For \( x \geq 0 \): \[ |x| = x \implies f + g = x + x = 2x \] - For \( x < 0 \): \[ |x| = -x \implies f + g = x - x = 0 \] Thus, \[ f + g = \begin{cases} 2x & \text{if } x \geq 0 \\ 0 & \text{if } x < 0 \end{cases} \] 2. **Define \( f - g \)**: \[ f - g = f(x) - g(x) = x - |x| \] - For \( x \geq 0 \): \[ |x| = x \implies f - g = x - x = 0 \] - For \( x < 0 \): \[ |x| = -x \implies f - g = x + x = 2x \] Thus, \[ f - g = \begin{cases} 0 & \text{if } x \geq 0 \\ 2x & \text{if } x < 0 \end{cases} \] 3. **Define \( f \cdot g \)**: \[ f \cdot g = f(x) \cdot g(x) = x \cdot |x| \] - For \( x \geq 0 \): \[ |x| = x \implies f \cdot g = x \cdot x = x^2 \] - For \( x < 0 \): \[ |x| = -x \implies f \cdot g = x \cdot (-x) = -x^2 \] Thus, \[ f \cdot g = \begin{cases} x^2 & \text{if } x \geq 0 \\ -x^2 & \text{if } x < 0 \end{cases} \] 4. **Define \( \frac{f}{g} \)**: \[ \frac{f}{g} = \frac{f(x)}{g(x)} = \frac{x}{|x|} \] - For \( x > 0 \): \[ |x| = x \implies \frac{f}{g} = \frac{x}{x} = 1 \] - For \( x < 0 \): \[ |x| = -x \implies \frac{f}{g} = \frac{x}{-x} = -1 \] - Note: \( \frac{f}{g} \) is undefined at \( x = 0 \). Thus, \[ \frac{f}{g} = \begin{cases} 1 & \text{if } x > 0 \\ -1 & \text{if } x < 0 \end{cases} \] ### Final Results: - \( f + g = \begin{cases} 2x & \text{if } x \geq 0 \\ 0 & \text{if } x < 0 \end{cases} \) - \( f - g = \begin{cases} 0 & \text{if } x \geq 0 \\ 2x & \text{if } x < 0 \end{cases} \) - \( f \cdot g = \begin{cases} x^2 & \text{if } x \geq 0 \\ -x^2 & \text{if } x < 0 \end{cases} \) - \( \frac{f}{g} = \begin{cases} 1 & \text{if } x > 0 \\ -1 & \text{if } x < 0 \end{cases} \) (undefined at \( x = 0 \))
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2 F|10 Videos
  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2 G|10 Videos
  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2D|18 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|10 Videos
  • SEQUENCE AND SERIES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|32 Videos

Similar Questions

Explore conceptually related problems

If f(x) = x^(2) and g(x) = Ixl then find the values of: (i) f+g, (ii) f-g, (iii) fg, (iv) 2f, (v) f^(2) , (vi) f+3

If f(x)=x^(2) and g(x)=2x , then evaluate, (i) (f+g)(3)" "(ii) (f-g)(2) (iii) (f*g)(1)" "(iv) ((f)/(g))(5)

Knowledge Check

  • If f(x)=cosx and g(x)=2x+1 , which of the following are even functions? I. f(x)*g(x) II f(g(x)) III. g(f(x))

    A
    only I
    B
    only II
    C
    only III
    D
    Only I and II
  • If f(x)=x^(3) and g(x)=x^(2)+1 , which of the following is an odd functionn (are odd functions)? I. f(x)*g(x) II. f(g(x)) III. g(f(x))

    A
    Only I
    B
    only II
    C
    only III
    D
    Only II and III
  • Similar Questions

    Explore conceptually related problems

    If f and g are two real valued functions defined as f(x) =2x +1 and g (x) =x^(2) +1 then find (i) f+g (ii) f-g (iii) fg (iv) (f)/(g)

    If f(x)=(a x^2+b)^3, then find the function g such that f(g(x))=g(f(x))dot

    Let f(x)=x^2 and g(x)" "=" "2x" "+" "1 be two real functions. Find (f" "+" "g) (x) , (f" "" "g)" "(x) , (fg)" "(x) , (f/g)(x) .

    Let f(x)=x^2 and g(x) = 2x + 1 be two real functions. find (f +g)(x) , (f-g)(x) , (fg)(x) , (f/g)(x) .

    If f(x)=log_(e)x and g(x)=e^(x) , then prove that : f(g(x)}=g{f(x)}

    Let f(x) = 3x^(2) + 6x + 5 and g(x) = x + 1 be two real functions. Find (f+g)(x), (f-g)(x), (fg)(x) and ((f)/(g))(x)