Home
Class 11
MATHS
Convert the following into polar form : ...

Convert the following into polar form :
(i) `-1+isqrt(3)`
(ii) `1-i`
(iii) `1-(1)/(i)`
(iv) `3-4i`
(v) `sin120^(@)-icos120^(@)`
(vi) 2

Text Solution

AI Generated Solution

The correct Answer is:
To convert the given complex numbers into polar form, we will follow these steps for each part: 1. **Find the modulus (r)** of the complex number using the formula: \[ r = \sqrt{x^2 + y^2} \] where \( x \) is the real part and \( y \) is the imaginary part. 2. **Find the argument (θ)** using the formula: \[ \tan(\theta) = \frac{y}{x} \] and then determine the correct quadrant for \( θ \). 3. **Write the polar form** using the formula: \[ z = r(\cos(\theta) + i\sin(\theta)) \] or in exponential form: \[ z = re^{i\theta} \] Let's solve each part step by step: ### Part (i): Convert \(-1 + i\sqrt{3}\) into polar form 1. **Find r**: \[ r = \sqrt{(-1)^2 + (\sqrt{3})^2} = \sqrt{1 + 3} = \sqrt{4} = 2 \] 2. **Find θ**: \[ \tan(\theta) = \frac{\sqrt{3}}{-1} = -\sqrt{3} \] This corresponds to \( \theta = \frac{2\pi}{3} \) (since the point is in the second quadrant). 3. **Polar form**: \[ z = 2\left(\cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right)\right) \] ### Part (ii): Convert \(1 - i\) into polar form 1. **Find r**: \[ r = \sqrt{(1)^2 + (-1)^2} = \sqrt{1 + 1} = \sqrt{2} \] 2. **Find θ**: \[ \tan(\theta) = \frac{-1}{1} = -1 \] This corresponds to \( \theta = \frac{7\pi}{4} \) (fourth quadrant). 3. **Polar form**: \[ z = \sqrt{2}\left(\cos\left(\frac{7\pi}{4}\right) + i\sin\left(\frac{7\pi}{4}\right)\right) \] ### Part (iii): Convert \(1 - \frac{1}{i}\) into polar form 1. **Convert \(-\frac{1}{i}\)**: \[ -\frac{1}{i} = i \] Thus, the expression becomes \(1 + i\). 2. **Find r**: \[ r = \sqrt{(1)^2 + (1)^2} = \sqrt{2} \] 3. **Find θ**: \[ \tan(\theta) = \frac{1}{1} = 1 \] This corresponds to \( \theta = \frac{\pi}{4} \). 4. **Polar form**: \[ z = \sqrt{2}\left(\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right) \] ### Part (iv): Convert \(3 - 4i\) into polar form 1. **Find r**: \[ r = \sqrt{(3)^2 + (-4)^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \] 2. **Find θ**: \[ \tan(\theta) = \frac{-4}{3} \] This gives \( \theta = \tan^{-1}\left(-\frac{4}{3}\right) \) (fourth quadrant). 3. **Polar form**: \[ z = 5\left(\cos(\tan^{-1}(-\frac{4}{3})) + i\sin(\tan^{-1}(-\frac{4}{3}))\right) \] ### Part (v): Convert \(\sin(120^\circ) - i\cos(120^\circ)\) into polar form 1. **Convert to standard form**: \[ \sin(120^\circ) - i\cos(120^\circ) = \frac{\sqrt{3}}{2} - i\left(-\frac{1}{2}\right) = \frac{\sqrt{3}}{2} + i\frac{1}{2} \] 2. **Find r**: \[ r = \sqrt{\left(\frac{\sqrt{3}}{2}\right)^2 + \left(\frac{1}{2}\right)^2} = \sqrt{\frac{3}{4} + \frac{1}{4}} = \sqrt{1} = 1 \] 3. **Find θ**: \[ \tan(\theta) = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}} \] This corresponds to \( \theta = \frac{\pi}{6} \). 4. **Polar form**: \[ z = 1\left(\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)\right) \] ### Part (vi): Convert \(2\) into polar form 1. **Find r**: \[ r = 2 \] 2. **Find θ**: \[ \theta = 0 \] 3. **Polar form**: \[ z = 2\left(\cos(0) + i\sin(0)\right) \] ### Summary of Polar Forms: 1. \( z = 2\left(\cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right)\right) \) 2. \( z = \sqrt{2}\left(\cos\left(\frac{7\pi}{4}\right) + i\sin\left(\frac{7\pi}{4}\right)\right) \) 3. \( z = \sqrt{2}\left(\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right) \) 4. \( z = 5\left(\cos(\tan^{-1}(-\frac{4}{3})) + i\sin(\tan^{-1}(-\frac{4}{3}))\right) \) 5. \( z = 1\left(\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)\right) \) 6. \( z = 2\left(\cos(0) + i\sin(0)\right) \)

To convert the given complex numbers into polar form, we will follow these steps for each part: 1. **Find the modulus (r)** of the complex number using the formula: \[ r = \sqrt{x^2 + y^2} \] where \( x \) is the real part and \( y \) is the imaginary part. 2. **Find the argument (θ)** using the formula: \[ \tan(\theta) = \frac{y}{x} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5D|6 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5E|10 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5B|29 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exericse|20 Videos
  • CONIC SECTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|8 Videos

Similar Questions

Explore conceptually related problems

Put the following numbers in the polar form: -1-sqrt(3)i

Convert the following in the polar form : (i) (1+7i)/((2-i)^2) (ii) (1+3i)/(1-2i)

Knowledge Check

  • The polar form of 1+i sqrt(3) is

    A
    `2( cos ""(pi)/(6) + isin""(pi)/(6))`
    B
    `2( cos ""(pi)/(3) + isin""(pi)/(3))`
    C
    `2(cos ""(2pi)/(3)+isin""(2pi)/(3))`
    D
    `2( cos (-(pi)/(6))+ isin (-(pi)/(6)))`
  • Similar Questions

    Explore conceptually related problems

    Convert of the complex number in the polar form: -1-i

    Convert of the complex number in the polar form: 1-i

    Convert of the complex number in the polar form: -1 + i

    Convert of the complex number in the polar form: 1-i

    Change the following complex numbers into polar form (1+ 3i)/(1-2i)

    Convert the following in the form of a complex number : (i) (2, -5) (ii) (-3,1) (iii) (0, -2)

    Express the following in the form of a + b i :(i) (-5i)(1/8i) (ii) (-i)(2i)(-1/8i)^3