Home
Class 11
MATHS
Expand using binomial theorem: (i) (1...

Expand using binomial theorem:
`(i) (1-2x)^(4) " " (ii) (1+(1)/(x^(2)))^(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problems using the Binomial Theorem, we will apply the theorem step by step for each part. ### Part (i): Expand \( (1 - 2x)^4 \) **Step 1: Identify the components** - Here, \( a = 1 \), \( b = -2x \), and \( n = 4 \). **Step 2: Write the Binomial Expansion Formula** The Binomial Theorem states: \[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \] For our case: \[ (1 - 2x)^4 = \sum_{k=0}^{4} \binom{4}{k} (1)^{4-k} (-2x)^k \] **Step 3: Calculate each term of the expansion** - For \( k = 0 \): \[ \binom{4}{0} (1)^{4} (-2x)^{0} = 1 \] - For \( k = 1 \): \[ \binom{4}{1} (1)^{3} (-2x)^{1} = 4 \cdot (-2x) = -8x \] - For \( k = 2 \): \[ \binom{4}{2} (1)^{2} (-2x)^{2} = 6 \cdot (4x^2) = 24x^2 \] - For \( k = 3 \): \[ \binom{4}{3} (1)^{1} (-2x)^{3} = 4 \cdot (-8x^3) = -32x^3 \] - For \( k = 4 \): \[ \binom{4}{4} (1)^{0} (-2x)^{4} = 1 \cdot 16x^4 = 16x^4 \] **Step 4: Combine all terms** Putting it all together: \[ (1 - 2x)^4 = 1 - 8x + 24x^2 - 32x^3 + 16x^4 \] ### Part (ii): Expand \( \left(1 + \frac{1}{x^2}\right)^4 \) **Step 1: Identify the components** - Here, \( a = 1 \), \( b = \frac{1}{x^2} \), and \( n = 4 \). **Step 2: Write the Binomial Expansion Formula** Using the same Binomial Theorem: \[ \left(1 + \frac{1}{x^2}\right)^4 = \sum_{k=0}^{4} \binom{4}{k} (1)^{4-k} \left(\frac{1}{x^2}\right)^k \] **Step 3: Calculate each term of the expansion** - For \( k = 0 \): \[ \binom{4}{0} (1)^{4} \left(\frac{1}{x^2}\right)^{0} = 1 \] - For \( k = 1 \): \[ \binom{4}{1} (1)^{3} \left(\frac{1}{x^2}\right)^{1} = 4 \cdot \frac{1}{x^2} = \frac{4}{x^2} \] - For \( k = 2 \): \[ \binom{4}{2} (1)^{2} \left(\frac{1}{x^2}\right)^{2} = 6 \cdot \frac{1}{x^4} = \frac{6}{x^4} \] - For \( k = 3 \): \[ \binom{4}{3} (1)^{1} \left(\frac{1}{x^2}\right)^{3} = 4 \cdot \frac{1}{x^6} = \frac{4}{x^6} \] - For \( k = 4 \): \[ \binom{4}{4} (1)^{0} \left(\frac{1}{x^2}\right)^{4} = 1 \cdot \frac{1}{x^8} = \frac{1}{x^8} \] **Step 4: Combine all terms** Putting it all together: \[ \left(1 + \frac{1}{x^2}\right)^4 = 1 + \frac{4}{x^2} + \frac{6}{x^4} + \frac{4}{x^6} + \frac{1}{x^8} \] ### Final Answers: 1. \( (1 - 2x)^4 = 1 - 8x + 24x^2 - 32x^3 + 16x^4 \) 2. \( \left(1 + \frac{1}{x^2}\right)^4 = 1 + \frac{4}{x^2} + \frac{6}{x^4} + \frac{4}{x^6} + \frac{1}{x^8} \)

To solve the given problems using the Binomial Theorem, we will apply the theorem step by step for each part. ### Part (i): Expand \( (1 - 2x)^4 \) **Step 1: Identify the components** - Here, \( a = 1 \), \( b = -2x \), and \( n = 4 \). **Step 2: Write the Binomial Expansion Formula** ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8B|38 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8C|28 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exericse|20 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|20 Videos

Similar Questions

Explore conceptually related problems

Expand using Binomial Theorem (1+x/2-2/x)^4,x!=0.

Expand the following by binomial theorem: (1-2x)^5

Expand the following by binomial theorem: (1-x)^6

Using binomial theorem compute : (10. 1)^5

Using binomial theorem, evaluate : (101)^4

Expand the following by binomial theorem: (2x-3)^6

Expand the following by binomial theorem: (x+ 1/x)^7

Expand the following by binomial theorem: (x+y)^5

Using binomial theorem find (i) (101)^(5) (ii) 51^(6)

By using binomial theorem, expand: (1+x+x^2)^3