Home
Class 12
MATHS
find the inverse of the following mat...

find the inverse of the following matrix : `[{:(1,-1),(2,3):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the given matrix \( A = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of the Matrix The determinant of a 2x2 matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is calculated using the formula: \[ \text{det}(A) = ad - bc \] For our matrix: - \( a = 1 \) - \( b = -1 \) - \( c = 2 \) - \( d = 3 \) Calculating the determinant: \[ \text{det}(A) = (1)(3) - (-1)(2) = 3 + 2 = 5 \] ### Step 2: Check if the Determinant is Non-Zero Since the determinant \( \text{det}(A) = 5 \) is not equal to zero, the inverse of the matrix exists. ### Step 3: Find the Adjoint of the Matrix The adjoint of a 2x2 matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by: \[ \text{adj}(A) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] For our matrix: - \( d = 3 \) - \( -b = -(-1) = 1 \) - \( -c = -2 \) - \( a = 1 \) Thus, the adjoint is: \[ \text{adj}(A) = \begin{pmatrix} 3 & 1 \\ -2 & 1 \end{pmatrix} \] ### Step 4: Calculate the Inverse of the Matrix The inverse of the matrix \( A \) is given by the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the values we found: \[ A^{-1} = \frac{1}{5} \cdot \begin{pmatrix} 3 & 1 \\ -2 & 1 \end{pmatrix} \] This results in: \[ A^{-1} = \begin{pmatrix} \frac{3}{5} & \frac{1}{5} \\ -\frac{2}{5} & \frac{1}{5} \end{pmatrix} \] ### Final Answer The inverse of the matrix \( A \) is: \[ A^{-1} = \begin{pmatrix} \frac{3}{5} & \frac{1}{5} \\ -\frac{2}{5} & \frac{1}{5} \end{pmatrix} \]

To find the inverse of the given matrix \( A = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of the Matrix The determinant of a 2x2 matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is calculated using the formula: \[ \text{det}(A) = ad - bc \] For our matrix: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3e|10 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3f|10 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3c|10 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Find the inverse of the following matrices [{:(3,-1),(-4,2):}](ii)[{:(2,-6),(1,-2):}]

Using elementary row operations, find the inverse of the following matrix: [[2,5],[1, 3]]

Using elementary transformation, find the inverse of the following matrix: ((1,3,-2),(-3,0,-5),(2,5,0))

Find the inverse of the matrix A = {:((1,2,-2),(-1,3,0),(0,-2,1)):} by using elementary row transformations.

Using elementry transformation, find the inverse of the matrix. [{:(,0,1,2),(,1,2,3),(,3,1,1,):}]

Find the inverse of the matrix A= [(3,1),(4,2)]

Find the inverse of the matrix |[2,-1], [3, 4]| .

Using elementary transformation find the inverse of the matrix : A=((1, -3,2),(3, 0, 1),(-2, -1, 0))

Using elementary transformations, find the inverse of the matrix : [(2,0,-1),(5, 1, 0),(0, 1, 3)]

Using elementary transformation, find the inverse of the matrix ({:(2, -1, 1), (-1, 2, -1), (1, -1, 2):})