Home
Class 12
MATHS
[{:(1,-1),(2,3):}] find the inverse of m...

`[{:(1,-1),(2,3):}]` find the inverse of matrix

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the given matrix \( A = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix} \), we will follow the steps outlined below: ### Step 1: Calculate the Determinant of Matrix \( A \) The determinant of a 2x2 matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by the formula: \[ \text{det}(A) = ad - bc \] For our matrix: \[ a = 1, \quad b = -1, \quad c = 2, \quad d = 3 \] Calculating the determinant: \[ \text{det}(A) = (1)(3) - (-1)(2) = 3 + 2 = 5 \] ### Step 2: Check if the Determinant is Non-Zero Since \( \text{det}(A) = 5 \) which is not equal to zero, the inverse of the matrix exists. ### Step 3: Calculate the Adjoint of Matrix \( A \) The adjoint of a 2x2 matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by: \[ \text{adj}(A) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] For our matrix \( A \): \[ \text{adj}(A) = \begin{pmatrix} 3 & 1 \\ -2 & 1 \end{pmatrix} \] ### Step 4: Transpose the Adjoint Matrix The adjoint matrix is already in the required form for a 2x2 matrix, but we can write it explicitly as: \[ \text{adj}(A) = \begin{pmatrix} 3 & 1 \\ -2 & 1 \end{pmatrix} \] ### Step 5: Calculate the Inverse of Matrix \( A \) The inverse of matrix \( A \) is given by the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the values we calculated: \[ A^{-1} = \frac{1}{5} \cdot \begin{pmatrix} 3 & 1 \\ -2 & 1 \end{pmatrix} \] This results in: \[ A^{-1} = \begin{pmatrix} \frac{3}{5} & \frac{1}{5} \\ -\frac{2}{5} & \frac{1}{5} \end{pmatrix} \] ### Final Answer Thus, the inverse of the matrix \( A \) is: \[ A^{-1} = \begin{pmatrix} \frac{3}{5} & \frac{1}{5} \\ -\frac{2}{5} & \frac{1}{5} \end{pmatrix} \] ---

To find the inverse of the given matrix \( A = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix} \), we will follow the steps outlined below: ### Step 1: Calculate the Determinant of Matrix \( A \) The determinant of a 2x2 matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by the formula: \[ \text{det}(A) = ad - bc ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exerice|15 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.3|12 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

[{:(1,3),(2,7):}] find the inverse of matrix

[{:(3,10),(2,7):}] find the inverse of matrix

[{:(2,1),(1,1):}] find the inverse of matrix

[{:(2,1),(4,2):}] find the inverse of matrix

[{:(4,5),(3,4):}] find the inverse of matrix

[{:(2,3),(5,7):}] find the inverse of the matrix

[{:(2,-6),( 1,-2):}] find inverse of matrix

if A=[{:(1,-4,5),(2,1,-3):}]and B=[{:(2,3,-1),(1,2,3):}] then find a matrix C if 2A+3B -4C is a zero matrix.

Using elementary transformations, find the inverse of the matrix [[1,-1],[ 2, 3]]

Using elementary transformations, find the inverse of the matrix [[2,-3],[-1, 2]]