Home
Class 10
MATHS
Solve for x and y, px + qy = 1 and qx +...

Solve for x and y, px + qy = 1 and `qx + py = ((p + q)^(2))/(p^2 + q^2)-1`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equations \( px + qy = 1 \) and \( qx + py = \frac{(p + q)^2}{p^2 + q^2} - 1 \), we will follow these steps: ### Step 1: Express \( x \) in terms of \( y \) From the first equation \( px + qy = 1 \), we can isolate \( x \): \[ px = 1 - qy \] \[ x = \frac{1 - qy}{p} \] ### Step 2: Substitute \( x \) into the second equation Now, we substitute the expression for \( x \) into the second equation \( qx + py = \frac{(p + q)^2}{p^2 + q^2} - 1 \): \[ q\left(\frac{1 - qy}{p}\right) + py = \frac{(p + q)^2}{p^2 + q^2} - 1 \] ### Step 3: Simplify the left side Distributing \( q \) gives us: \[ \frac{q(1 - qy)}{p} + py = \frac{(p + q)^2}{p^2 + q^2} - 1 \] This simplifies to: \[ \frac{q}{p} - \frac{q^2y}{p} + py = \frac{(p + q)^2}{p^2 + q^2} - 1 \] ### Step 4: Combine terms on the left side Now, we combine the terms on the left side: \[ \left(-\frac{q^2}{p} + p\right)y + \frac{q}{p} = \frac{(p + q)^2}{p^2 + q^2} - 1 \] ### Step 5: Find a common denominator for the right side To simplify the right side, we need to find a common denominator: \[ \frac{(p + q)^2 - (p^2 + q^2)}{p^2 + q^2} \] ### Step 6: Simplify the right side Calculating \( (p + q)^2 - (p^2 + q^2) \): \[ (p + q)^2 = p^2 + 2pq + q^2 \] So, \[ (p + q)^2 - (p^2 + q^2) = 2pq \] Thus, the right side becomes: \[ \frac{2pq}{p^2 + q^2} \] ### Step 7: Set up the equation Now we have: \[ \left(-\frac{q^2}{p} + p\right)y + \frac{q}{p} = \frac{2pq}{p^2 + q^2} \] ### Step 8: Isolate \( y \) Now we can isolate \( y \): \[ \left(-\frac{q^2}{p} + p\right)y = \frac{2pq}{p^2 + q^2} - \frac{q}{p} \] ### Step 9: Find a common denominator for the left side Taking the common denominator for the left side gives: \[ \left(-\frac{q^2}{p} + p\right)y = \frac{2pq - q(p^2 + q^2)}{p(p^2 + q^2)} \] ### Step 10: Solve for \( y \) Now we can solve for \( y \): \[ y = \frac{2pq - q(p^2 + q^2)}{p(p^2 + q^2)(-\frac{q^2}{p} + p)} \] ### Step 11: Simplify \( y \) Factoring out \( q \) gives: \[ y = \frac{q(p^2 - q^2)}{p^2 + q^2} \] ### Step 12: Substitute \( y \) back to find \( x \) Now substitute \( y \) back into the equation for \( x \): \[ x = \frac{1 - q\left(\frac{q(p^2 - q^2)}{p^2 + q^2}\right)}{p} \] ### Step 13: Simplify \( x \) This simplifies to: \[ x = \frac{p^2}{p(p^2 + q^2)} \] ### Final Answers Thus, the solutions are: \[ x = \frac{p}{p^2 + q^2}, \quad y = \frac{q}{p^2 + q^2} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Short Answer Questions|10 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|5 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|4 Videos

Similar Questions

Explore conceptually related problems

The expression x^2-4px+q^2> 0 for all real x and also r^2+ p^2 < qr the range of f(x) = (x+r) / (x^2 +qx + p^2) is

Show that: x p q p x q q q xx-p)(x^2+p x-2q^2) .

The equations of the tangents drawn from the origin to the circle x^2 + y^2 - 2px - 2qy + q^2 = 0 are perpendicular if (A) p^2 = q^2 (B) p^2 = q^2 =1 (C) p = q/2 (D) q= p/2

If alpha , beta , gamma are the roots of x^3 -px^2 +qx -r=0 and r ne 0 then find (1)/( alpha^2) +(1)/( beta^2) +(1)/( gamma ^2) in terms of p,q ,r

If the line of regression of Y on X is p_(1)x + q_(1)y + r_(1)= 0 and that of X on Y is p_(2)x + q_(2)y + r_(2)= 0 , prove that (p_(1)q_(2))/(p_(2)q_(1)) le 1

If orthocentre of the triangle formed by ax^2+2hxy+by^2= 0 and px + qy =1 is (r,s) then prove that r/p=s/q=(a+b)/(aq^2+bq^2-2hpq)

Using properties of determinants, show that |{:(x, p, q), ( p, x, q), (q,q,x):}|= (x-p) (x ^(2) + px - 2q ^(2))

The equation x^(2) + px +q =0 has two roots alpha, beta then Choose the correct answer : (1) The equation qx^(2) +(2q -p^(2))x +q has roots (1) alpha /beta , beta/alpha (2) 1/alpha ,1/beta (3) alpha^(2), beta^(2) (4) None of these (2) The equation whose roots are 1/alpha , 1/beta is (1) px^(2) + qx + 1 =0 (2) qx^(2) +px +1 =0 (3) x^(2) + qx + p =0 (4) qx^(2) +x+ p =0 3. the values of p and q when roots are -1,2 (1) p = -1 , q = -2 (2) p =-1 , q =2 (3) p=1 , q = -2 (4) None of these

The locus of the orthocentre of the triangle formed by the lines (1+p) x-py + p(1 + p) = 0, (1 + q)x-qy + q(1 +q) = 0 and y = 0, where p!=*q , is (A) a hyperbola (B) a parabola (C) an ellipse (D) a straight line

The locus of the orthocentre of the triangle formed by the lines (1+p) x-py + p(1 + p) = 0, (1 + q)x-qy + q(1 +q) = 0 and y = 0, where p!=*q , is (A) a hyperbola (B) a parabola (C) an ellipse (D) a straight line