Home
Class 11
MATHS
lim(xrarr0) (sqrt(1+x)-1)/(x)=?...

`lim_(xrarr0) (sqrt(1+x)-1)/(x)=?`

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit \[ \lim_{x \to 0} \frac{\sqrt{1+x} - 1}{x} \] we start by substituting \(x = 0\): 1. **Substituting \(x = 0\)**: \[ \frac{\sqrt{1+0} - 1}{0} = \frac{1 - 1}{0} = \frac{0}{0} \] This is an indeterminate form \( \frac{0}{0} \). **Hint**: When you encounter a \( \frac{0}{0} \) form, you can use L'Hôpital's Rule. 2. **Applying L'Hôpital's Rule**: According to L'Hôpital's Rule, we differentiate the numerator and the denominator separately. - **Numerator**: \( \sqrt{1+x} - 1 \) - The derivative of \( \sqrt{1+x} \) is \( \frac{1}{2\sqrt{1+x}} \) (using the chain rule). - Thus, the derivative of the numerator is: \[ \frac{d}{dx}(\sqrt{1+x} - 1) = \frac{1}{2\sqrt{1+x}} \cdot 1 = \frac{1}{2\sqrt{1+x}} \] - **Denominator**: \( x \) - The derivative of \( x \) is \( 1 \). 3. **Re-evaluating the limit**: Now we can rewrite the limit using the derivatives: \[ \lim_{x \to 0} \frac{\frac{1}{2\sqrt{1+x}}}{1} = \lim_{x \to 0} \frac{1}{2\sqrt{1+x}} \] 4. **Substituting \(x = 0\) again**: \[ \frac{1}{2\sqrt{1+0}} = \frac{1}{2\sqrt{1}} = \frac{1}{2} \] Thus, the limit is: \[ \lim_{x \to 0} \frac{\sqrt{1+x} - 1}{x} = \frac{1}{2} \] ### Final Answer: \[ \frac{1}{2} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX-13H|10 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX -13.1|32 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX-13F|20 Videos
  • INTRODUCTION OF THREE DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|6 Videos
  • LINEAR INEQUALITIES

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|14 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0) (3sqrt(1+x-1))/(x)

lim_(xrarr0) (2x)/(sqrt(1+x)-1)

Evaluate lim_(xrarr0) (sqrt(1+x+x^(2))-1)/(x)

lim_(xrarr0) ((x+1)^(5)-1)/(x)

Prove that lim_(xrarr0) ((1+x)^(n) - 1)/(x) = n .

Evaluate : lim_(xrarr0) (sqrt(1+x)-sqrt(1-x))/( x)

lim_(xrarr0) (sqrt(x^(2)+1)-1)/(sqrt(x^(2)+9)-3)?

lim_(xrarr0) (sqrt(2+x)-sqrt(2))/(x)

Evaluate : lim_(xrarr0)((1-x)^(n)-1)/(x)

lim_(xrarr0)(cos 2x-1)/(cosx-1)