Home
Class 12
MATHS
Prove: 4 tan^(-1) (1/5 )- tan^(-1)( 1/2...

Prove: ` 4 tan^(-1) (1/5 )- tan^(-1)( 1/239) = pi/4`

A

`(pi)/(6)`

B

`(pi)/(4)`

C

`(pi)/(3)`

D

`(pi)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To prove the equation \( 4 \tan^{-1} \left( \frac{1}{5} \right) - \tan^{-1} \left( \frac{1}{239} \right) = \frac{\pi}{4} \), we will follow a systematic approach using trigonometric identities. ### Step-by-Step Solution: 1. **Start with the Left-Hand Side (LHS)**: \[ LHS = 4 \tan^{-1} \left( \frac{1}{5} \right) - \tan^{-1} \left( \frac{1}{239} \right) \] 2. **Use the Double Angle Formula**: We can rewrite \( 4 \tan^{-1} \left( \frac{1}{5} \right) \) as \( 2 \times 2 \tan^{-1} \left( \frac{1}{5} \right) \). Using the formula \( 2 \tan^{-1}(x) = \tan^{-1} \left( \frac{2x}{1 - x^2} \right) \), we first calculate \( 2 \tan^{-1} \left( \frac{1}{5} \right) \): \[ 2 \tan^{-1} \left( \frac{1}{5} \right) = \tan^{-1} \left( \frac{2 \cdot \frac{1}{5}}{1 - \left( \frac{1}{5} \right)^2} \right) \] Simplifying this, we have: \[ = \tan^{-1} \left( \frac{\frac{2}{5}}{1 - \frac{1}{25}} \right) = \tan^{-1} \left( \frac{\frac{2}{5}}{\frac{24}{25}} \right) = \tan^{-1} \left( \frac{2 \cdot 25}{5 \cdot 24} \right) = \tan^{-1} \left( \frac{10}{24} \right) = \tan^{-1} \left( \frac{5}{12} \right) \] 3. **Calculate \( 4 \tan^{-1} \left( \frac{1}{5} \right) \)**: Now we apply the double angle formula again: \[ 4 \tan^{-1} \left( \frac{1}{5} \right) = 2 \cdot 2 \tan^{-1} \left( \frac{1}{5} \right) = 2 \tan^{-1} \left( \frac{5}{12} \right) \] Using the double angle formula again: \[ 2 \tan^{-1} \left( \frac{5}{12} \right) = \tan^{-1} \left( \frac{2 \cdot \frac{5}{12}}{1 - \left( \frac{5}{12} \right)^2} \right) \] Simplifying this: \[ = \tan^{-1} \left( \frac{\frac{10}{12}}{1 - \frac{25}{144}} \right) = \tan^{-1} \left( \frac{\frac{5}{6}}{\frac{119}{144}} \right) = \tan^{-1} \left( \frac{5 \cdot 144}{6 \cdot 119} \right) = \tan^{-1} \left( \frac{120}{119} \right) \] 4. **Combine with the Second Term**: Now we substitute back into the LHS: \[ LHS = \tan^{-1} \left( \frac{120}{119} \right) - \tan^{-1} \left( \frac{1}{239} \right) \] 5. **Use the Formula for the Difference of Arctangents**: We apply the formula: \[ \tan^{-1}(A) - \tan^{-1}(B) = \tan^{-1} \left( \frac{A - B}{1 + AB} \right) \] Here, \( A = \frac{120}{119} \) and \( B = \frac{1}{239} \): \[ LHS = \tan^{-1} \left( \frac{\frac{120}{119} - \frac{1}{239}}{1 + \frac{120}{119} \cdot \frac{1}{239}} \right) \] 6. **Simplify the Expression**: Finding a common denominator for the numerator: \[ = \tan^{-1} \left( \frac{\frac{120 \cdot 239 - 119}{119 \cdot 239}}{1 + \frac{120}{119 \cdot 239}} \right) \] The numerator simplifies to: \[ = \tan^{-1} \left( \frac{28680 - 119}{28441} \right) = \tan^{-1} \left( \frac{28561}{28441} \right) \] 7. **Final Simplification**: Notice that: \[ \frac{28561}{28441} = 1 \quad \text{(since \( 28561 = 169^2 \) and \( 28441 = 169^2 - 1 \))} \] Thus: \[ LHS = \tan^{-1}(1) = \frac{\pi}{4} \] 8. **Conclusion**: Therefore, we have shown: \[ 4 \tan^{-1} \left( \frac{1}{5} \right) - \tan^{-1} \left( \frac{1}{239} \right) = \frac{\pi}{4} \] Hence, the equation is proved.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exericse 2.1|14 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exericse 2.2|21 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exericse 2b|10 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|44 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos

Similar Questions

Explore conceptually related problems

Prove the following: 4\ tan^(-1)(1/5)-tan^(-1)(1/(239))=pi/4

4 tan^(-1)(1/5)-tan^(-1)(1/239) is equal to

Prove that 4 tan^(-1) . 1/5 - tan^(-1) . 1/70 + tan^(-1) . 1/99 = pi/4

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

Prove that tan^(-1) (1/4) + tan^(-1) (2/9) = 1/2 sin^(-1) (4/5)

Prove that tan ^(-1). 3/4+ tan^(-1) . 3/5 - tan^(-1) . 8/19 = pi/4

Find the value of 4 tan^-1 (1/5) - tan^-1 (1/239)

Find the value of 4 tan^-1 (1/5) - tan^-1 (1/239)

Prove that: sin^(-1)(3/5)=tan^(-1)(3/4)

Prove that : tan^(-1).(x)/(x+1)- tan ^(-1) (2x +1) = (3pi)/(4)