Home
Class 12
MATHS
" if " int (sin 2x- cos 2x) dx=(1)/(sqrt...

`" if " int (sin 2x- cos 2x) dx=(1)/(sqrt(2)) sin (2x-k)+c " then " k=?`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( k \) in the equation: \[ \int (\sin 2x - \cos 2x) \, dx = \frac{1}{\sqrt{2}} \sin(2x - k) + C \] ### Step 1: Calculate the integral We start by calculating the integral on the left side: \[ \int (\sin 2x - \cos 2x) \, dx = \int \sin 2x \, dx - \int \cos 2x \, dx \] ### Step 2: Integrate each term Using the integration formulas: - \(\int \sin(nx) \, dx = -\frac{1}{n} \cos(nx) + C\) - \(\int \cos(nx) \, dx = \frac{1}{n} \sin(nx) + C\) We can compute: 1. For \(\int \sin 2x \, dx\): \[ \int \sin 2x \, dx = -\frac{1}{2} \cos 2x + C_1 \] 2. For \(\int \cos 2x \, dx\): \[ \int \cos 2x \, dx = \frac{1}{2} \sin 2x + C_2 \] Thus, combining these results, we have: \[ \int (\sin 2x - \cos 2x) \, dx = -\frac{1}{2} \cos 2x - \frac{1}{2} \sin 2x + C \] ### Step 3: Factor out \(-\frac{1}{2}\) We can factor out \(-\frac{1}{2}\): \[ = -\frac{1}{2} (\cos 2x + \sin 2x) + C \] ### Step 4: Rewrite in terms of sine Next, we can express \(\cos 2x + \sin 2x\) in a single sine function using the identity: \[ \cos A + \sin A = \sqrt{2} \sin\left(A + \frac{\pi}{4}\right) \] Thus, we rewrite: \[ \cos 2x + \sin 2x = \sqrt{2} \sin\left(2x + \frac{\pi}{4}\right) \] Substituting this back gives: \[ -\frac{1}{2} (\cos 2x + \sin 2x) = -\frac{1}{2} \sqrt{2} \sin\left(2x + \frac{\pi}{4}\right) \] ### Step 5: Simplify the expression This can be simplified to: \[ -\frac{1}{\sqrt{2}} \sin\left(2x + \frac{\pi}{4}\right) + C \] ### Step 6: Set equal to the right side Now we equate this to the right side of the original equation: \[ -\frac{1}{\sqrt{2}} \sin\left(2x + \frac{\pi}{4}\right) + C = \frac{1}{\sqrt{2}} \sin(2x - k) + C \] ### Step 7: Compare the two sides Ignoring the constant \( C \), we have: \[ -\sin\left(2x + \frac{\pi}{4}\right) = \sin(2x - k) \] ### Step 8: Use the sine identity Using the identity \(\sin(A) = -\sin(B)\) implies: \[ A = \pi - B \quad \text{or} \quad A = -B \] Thus, we can write: \[ 2x + \frac{\pi}{4} = \pi - (2x - k) \] Solving this gives: \[ 2x + \frac{\pi}{4} = \pi - 2x + k \] ### Step 9: Rearranging the equation Rearranging, we find: \[ 4x + \frac{\pi}{4} = \pi + k \] ### Step 10: Isolate \( k \) To isolate \( k \), we can set \( x = 0 \): \[ 0 + \frac{\pi}{4} = \pi + k \implies k = \frac{\pi}{4} - \pi = -\frac{3\pi}{4} \] Thus, we find: \[ k = -\frac{3\pi}{4} \] ### Final Answer The value of \( k \) is: \[ \boxed{-\frac{3\pi}{4}} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.1|22 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.2|39 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7r|25 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(1+sin2x)/(cos^2x)dx

int(sin2x)/(cos x)*dx

The relation int(sin2x+cos2x)=(1)/(sqrt(2))sin(2x-a)+c is true for

int(sin 2x)/(5-cos^(2) x)dx

int(1)/(sin x - cos x +sqrt(2))dx equals

int(2+sin2x)/(1+cos2 x)dx

I=int(sin^2x)/(1+cos x)dx

Evaluate : int (sin x +cos x ) sqrt(9 +16 sin 2x) dx

int_(pi/6)^(pi/3) (sin x+ cos x)/(sqrt(sin 2x))dx

int(1)/(sin^(2)x-4 cos^(2)x)dx