Home
Class 12
MATHS
If x = sin^(-1) ((2t)/( 1 + t^(2) )) and...

If `x = sin^(-1) ((2t)/( 1 + t^(2) )) and y= tan^(-1) ((2t)/( 1-t^(2) )), t gt 1` prove that `(dy)/(dx) = 1`.

Answer

Step by step text solution for If x = sin^(-1) ((2t)/( 1 + t^(2) )) and y= tan^(-1) ((2t)/( 1-t^(2) )), t gt 1 prove that (dy)/(dx) = 1. by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VERY SIMILAR TEST 10

    ARIHANT PRAKASHAN|Exercise SECTION B (60 MARKS)|46 Videos
  • VERY SIMILAR TEST 1

    ARIHANT PRAKASHAN|Exercise Section C |10 Videos
  • VERY SIMILAR TEST 2

    ARIHANT PRAKASHAN|Exercise SECTION -C |13 Videos

Similar Questions

Explore conceptually related problems

Answer any three questions (b) Show that, if x = cos^(-1) ((1)/( sqrt(1+t^(2) ) )) and y= sin^(-1) ((t)/( sqrt(1 + t^(2) ) ) ) , then (dy)/(dx) is independent of t .

If sin 2x = (2t)/(1 + t^(2)), tan y = (2t)/(1 - t^(2)) then fina (dy)/(dx) .

If sin 2x = (2t)/(1 + t^(2)), tan y = (2t)/(1 - t^(2)) then fina (dy)/(dx) .

If x=a((1-t^(2))/(1+t^(2))) and y=(2t)/(1-t^(2)) , then find (dy)/(dx) .

Find (dy)/(dx) , when y=sin^(-1)((2sqrt(t)-1)/(t^(2)))

What is the derivative of sin^(-1)((2x)/(1+x^2)) w.r.t tan^(-1)((2x)/(1-x^2)) ?

Find the dy/dx when sin x = (2t)/(1+t^2), tan y = (2t)/(1-t^2)

Find (dy)/(dt) , when y=sin^(-1)(2sqrt(t^(2)-1)/(t^(2)))

If x=sqrt(a^(sin^(-1)t))andy=sqrt(a^(cos^(-1))t) , then show that (dy)/(dx)=(-y)/(x) .

If x=e^(cos2t) and y=e^(sin2t) , then prove that (dy)/(dx)=(-ylogx)/(x logy) .