Home
Class 12
PHYSICS
If the mass of neutron is 1.7xx10^(-27) ...

If the mass of neutron is `1.7xx10^(-27) kg`, then the de Broglie wavelength of neutron of energy 3eV is `(h = 6.6xx10^(-34) J.s)`

A

`1.6xx10^(-16)m`

B

`1.6xx10^(-11)m`

C

`1.4xx10^(-10)m`

D

`1.4xx10^(-11)m`

Text Solution

AI Generated Solution

The correct Answer is:
To find the de Broglie wavelength of a neutron with a given energy, we will follow these steps: ### Step 1: Write down the given data - Mass of neutron, \( m = 1.7 \times 10^{-27} \, \text{kg} \) - Energy of neutron, \( E = 3 \, \text{eV} \) - Planck's constant, \( h = 6.6 \times 10^{-34} \, \text{J.s} \) ### Step 2: Convert energy from eV to Joules To convert the energy from electron volts to joules, we use the conversion factor: \[ 1 \, \text{eV} = 1.6 \times 10^{-19} \, \text{J} \] Thus, \[ E = 3 \, \text{eV} = 3 \times 1.6 \times 10^{-19} \, \text{J} = 4.8 \times 10^{-19} \, \text{J} \] ### Step 3: Use the de Broglie wavelength formula The de Broglie wavelength \( \lambda \) is given by: \[ \lambda = \frac{h}{p} \] where \( p \) is the momentum. The momentum can be expressed in terms of energy and mass: \[ p = \sqrt{2mE} \] ### Step 4: Substitute for momentum in the de Broglie wavelength formula Substituting the expression for momentum into the de Broglie wavelength formula gives: \[ \lambda = \frac{h}{\sqrt{2mE}} \] ### Step 5: Substitute the known values Now, substituting the known values into the equation: \[ \lambda = \frac{6.6 \times 10^{-34}}{\sqrt{2 \times (1.7 \times 10^{-27}) \times (4.8 \times 10^{-19})}} \] ### Step 6: Calculate the denominator First, calculate the product in the square root: \[ 2 \times (1.7 \times 10^{-27}) \times (4.8 \times 10^{-19}) = 1.632 \times 10^{-45} \] Now, take the square root: \[ \sqrt{1.632 \times 10^{-45}} \approx 1.278 \times 10^{-22} \] ### Step 7: Calculate the de Broglie wavelength Now substitute this back into the equation for \( \lambda \): \[ \lambda = \frac{6.6 \times 10^{-34}}{1.278 \times 10^{-22}} \approx 5.16 \times 10^{-12} \, \text{m} \] ### Step 8: Final result Thus, the de Broglie wavelength of the neutron is approximately: \[ \lambda \approx 1.6 \times 10^{-11} \, \text{m} \]
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If the KE of electron is 2.275 xx 10^(-7) J , then calculate its de-Broglie wavelength.

The de Broglie wavelength of neutrons in thermal equilibrium is (given m_n=1.6xx10^(-27) kg)

De Broglie wavelength of 0.05 eV thermal neutron is

Find the de Broglie wavelength of electrons moving with a speed of 7 xx 10^(6) ms^(-1)

Calculate de - Broglie wavelength of an electron having kinetic energy 2.8xx10^(-23)J

A proton (mass = 1.66 xx 10^(-27)kg) is moving with kinetic energy 5 xx 10^(-27) J calculate the de Broglie wavelength associated with it ? (h = 6.6 xx 10^(-34)Js)

Find de-Broglie wavelength of electron with KE =9.6xx10^(-19)J .

What is the (a) momentum (b) speed and (c) de-Broglie wavelength of an electron with kinetic energy of 120 eV. Given h=6.6xx10^(-34)Js, m_(e)=9xx10^(-31)kg , 1eV=1.6xx10^(-19)J .

Calculate the frequency of a photon, having energy 41.25 eV. (h=6.6xx10^(-34) Js) .

Find the de Broglie wavelength of 2 MeV proton. Mass of proton =1.64xx10^(-27)kg , h=6.625xx10^(-34)Js