Home
Class 12
MATHS
The general solution of the system of eq...

The general solution of the system of equation `sin^(3) x + sin^(3) ((2pi )/( 3) + x) +sin^(3) ((4pi)/( 3) +x ) ` `+(3)/( 4) cos 2x= 0` `cos x cancel(=) 0` is

A

`x = ((2k +1 )pi)/(10) , k in Z`

B

`x = ((2k +1 )pi)/(5) , k in Z`

C

`x = ((4k +1 )pi)/(10) , k in Z`

D

`x = ((4k +1 )/(5))pi , k in Z`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \sin^3 x + \sin^3 \left(\frac{2\pi}{3} + x\right) + \sin^3 \left(\frac{4\pi}{3} + x\right) + \frac{3}{4} \cos 2x = 0 \] with the condition that \(\cos x \neq 0\), we will follow these steps: ### Step 1: Use the identity for \(\sin^3 \theta\) Recall the identity: \[ \sin^3 \theta = \frac{3 \sin \theta - \sin 3\theta}{4} \] We will apply this identity to each term in the equation. ### Step 2: Apply the identity Using the identity, we rewrite each sine term: \[ \sin^3 x = \frac{3 \sin x - \sin 3x}{4} \] \[ \sin^3 \left(\frac{2\pi}{3} + x\right) = \frac{3 \sin \left(\frac{2\pi}{3} + x\right) - \sin \left(3\left(\frac{2\pi}{3} + x\right)\right)}{4} \] \[ \sin^3 \left(\frac{4\pi}{3} + x\right) = \frac{3 \sin \left(\frac{4\pi}{3} + x\right) - \sin \left(3\left(\frac{4\pi}{3} + x\right)\right)}{4} \] ### Step 3: Substitute back into the equation Substituting these back into the original equation gives: \[ \frac{3 \sin x - \sin 3x}{4} + \frac{3 \sin \left(\frac{2\pi}{3} + x\right) - \sin \left(3\left(\frac{2\pi}{3} + x\right)\right)}{4} + \frac{3 \sin \left(\frac{4\pi}{3} + x\right) - \sin \left(3\left(\frac{4\pi}{3} + x\right)\right)}{4} + \frac{3}{4} \cos 2x = 0 \] ### Step 4: Factor out \(\frac{1}{4}\) Factor out \(\frac{1}{4}\): \[ \frac{1}{4} \left( 3 \sin x + 3 \sin \left(\frac{2\pi}{3} + x\right) + 3 \sin \left(\frac{4\pi}{3} + x\right) - \sin 3x - \sin \left(3\left(\frac{2\pi}{3} + x\right)\right) - \sin \left(3\left(\frac{4\pi}{3} + x\right)\right) + 3 \cos 2x \right) = 0 \] ### Step 5: Simplify the equation This simplifies to: \[ 3 \sin x + 3 \sin \left(\frac{2\pi}{3} + x\right) + 3 \sin \left(\frac{4\pi}{3} + x\right) - \sin 3x - \sin \left(3\left(\frac{2\pi}{3} + x\right)\right) - \sin \left(3\left(\frac{4\pi}{3} + x\right)\right) + 3 \cos 2x = 0 \] ### Step 6: Use sine addition formulas Using the sine addition formulas, we can express \(\sin \left(\frac{2\pi}{3} + x\right)\) and \(\sin \left(\frac{4\pi}{3} + x\right)\): \[ \sin \left(\frac{2\pi}{3} + x\right) = \frac{\sqrt{3}}{2} \cos x + \frac{1}{2} \sin x \] \[ \sin \left(\frac{4\pi}{3} + x\right) = -\frac{\sqrt{3}}{2} \cos x + \frac{1}{2} \sin x \] ### Step 7: Substitute and simplify Substituting these values back into the equation and simplifying will lead to a more manageable form of the equation. ### Step 8: Solve for \(x\) After simplifying, we will isolate \(x\) and solve for the general solution.
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

The solutions of the system of equations sin x sin y=sqrt(3)/4, cos x cos y= sqrt(3)/4 are

If f(x)=sin^(2)x+sin^(2)(x+(2pi)/(3))+sin^(2)(x+(4pi)/(3)) then :

Find the general solution of trigonometric equation 1+sin^(3)x+cos^(3)x=3/2sin2x

The number of solutions of the equation sinx. Sin2x. Sin3x = 1 in [0, 2pi]

The number of solution of the equation 2 "sin"^(3) x + 2 "cos"^(3) x - 3 "sin" 2x + 2 = 0 "in" [0, 4pi] , is

The number of solutions of the equation sin x . Sin 2x. Sin 3x=1 in [0,2pi] is

The number of solutions of the equation "sin" x = "cos" 3x " in " [0, pi] is

The number of solution of the equation |sin x|=|cos 3x| in [-2pi,2pi] is

The number of solutions of the equation "sin x = |"cos" 3x| "in" [0, pi] , is

The number of solutions of the equation 1 +sin^(4) x = cos ^(2) 3x, x in [-(5pi)/(2),(5pi)/(2)] is