Home
Class 12
MATHS
The general solution of the system of eq...

The general solution of the system of equation `sin^(3) x + sin^(3) ((2pi )/( 3) + x) +sin^(3) ((4pi)/( 3) +x ) ` `+(3)/( 4) cos 2x= 0` `cos x cancel(=) 0` is

A

`x = ((2k +1 )pi)/(10) , k in Z`

B

`x = ((2k +1 )pi)/(5) , k in Z`

C

`x = ((4k +1 )pi)/(10) , k in Z`

D

`x = ((4k +1 )/(5))pi , k in Z`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \sin^3 x + \sin^3 \left(\frac{2\pi}{3} + x\right) + \sin^3 \left(\frac{4\pi}{3} + x\right) + \frac{3}{4} \cos 2x = 0 \] with the condition that \(\cos x \neq 0\), we will follow these steps: ### Step 1: Use the identity for \(\sin^3 \theta\) Recall the identity: \[ \sin^3 \theta = \frac{3 \sin \theta - \sin 3\theta}{4} \] We will apply this identity to each term in the equation. ### Step 2: Apply the identity Using the identity, we rewrite each sine term: \[ \sin^3 x = \frac{3 \sin x - \sin 3x}{4} \] \[ \sin^3 \left(\frac{2\pi}{3} + x\right) = \frac{3 \sin \left(\frac{2\pi}{3} + x\right) - \sin \left(3\left(\frac{2\pi}{3} + x\right)\right)}{4} \] \[ \sin^3 \left(\frac{4\pi}{3} + x\right) = \frac{3 \sin \left(\frac{4\pi}{3} + x\right) - \sin \left(3\left(\frac{4\pi}{3} + x\right)\right)}{4} \] ### Step 3: Substitute back into the equation Substituting these back into the original equation gives: \[ \frac{3 \sin x - \sin 3x}{4} + \frac{3 \sin \left(\frac{2\pi}{3} + x\right) - \sin \left(3\left(\frac{2\pi}{3} + x\right)\right)}{4} + \frac{3 \sin \left(\frac{4\pi}{3} + x\right) - \sin \left(3\left(\frac{4\pi}{3} + x\right)\right)}{4} + \frac{3}{4} \cos 2x = 0 \] ### Step 4: Factor out \(\frac{1}{4}\) Factor out \(\frac{1}{4}\): \[ \frac{1}{4} \left( 3 \sin x + 3 \sin \left(\frac{2\pi}{3} + x\right) + 3 \sin \left(\frac{4\pi}{3} + x\right) - \sin 3x - \sin \left(3\left(\frac{2\pi}{3} + x\right)\right) - \sin \left(3\left(\frac{4\pi}{3} + x\right)\right) + 3 \cos 2x \right) = 0 \] ### Step 5: Simplify the equation This simplifies to: \[ 3 \sin x + 3 \sin \left(\frac{2\pi}{3} + x\right) + 3 \sin \left(\frac{4\pi}{3} + x\right) - \sin 3x - \sin \left(3\left(\frac{2\pi}{3} + x\right)\right) - \sin \left(3\left(\frac{4\pi}{3} + x\right)\right) + 3 \cos 2x = 0 \] ### Step 6: Use sine addition formulas Using the sine addition formulas, we can express \(\sin \left(\frac{2\pi}{3} + x\right)\) and \(\sin \left(\frac{4\pi}{3} + x\right)\): \[ \sin \left(\frac{2\pi}{3} + x\right) = \frac{\sqrt{3}}{2} \cos x + \frac{1}{2} \sin x \] \[ \sin \left(\frac{4\pi}{3} + x\right) = -\frac{\sqrt{3}}{2} \cos x + \frac{1}{2} \sin x \] ### Step 7: Substitute and simplify Substituting these values back into the equation and simplifying will lead to a more manageable form of the equation. ### Step 8: Solve for \(x\) After simplifying, we will isolate \(x\) and solve for the general solution.
Promotional Banner

Similar Questions

Explore conceptually related problems

The solutions of the system of equations sin x sin y=sqrt(3)/4, cos x cos y= sqrt(3)/4 are

If f(x)=sin^(2)x+sin^(2)(x+(2pi)/(3))+sin^(2)(x+(4pi)/(3)) then :

Find the general solution of trigonometric equation 1+sin^(3)x+cos^(3)x=3/2sin2x

The number of solutions of the equation sinx. Sin2x. Sin3x = 1 in [0, 2pi]

The number of solution of the equation 2 "sin"^(3) x + 2 "cos"^(3) x - 3 "sin" 2x + 2 = 0 "in" [0, 4pi] , is

The number of solutions of the equation sin x . Sin 2x. Sin 3x=1 in [0,2pi] is

The number of solutions of the equation "sin" x = "cos" 3x " in " [0, pi] is

The number of solution of the equation |sin x|=|cos 3x| in [-2pi,2pi] is

The number of solutions of the equation "sin x = |"cos" 3x| "in" [0, pi] , is

The number of solutions of the equation 1 +sin^(4) x = cos ^(2) 3x, x in [-(5pi)/(2),(5pi)/(2)] is