Home
Class 12
MATHS
If lim(x to 0) (x(1 + a cos x)-b sinx)/(...

If `lim_(x to 0) (x(1 + a cos x)-b sinx)/(x^3) = 1`, then the value of ab is euqal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given by \[ \lim_{x \to 0} \frac{x(1 + a \cos x - b \sin x)}{x^3} = 1, \] we can use Taylor series expansions for \(\cos x\) and \(\sin x\). ### Step 1: Expand \(\cos x\) and \(\sin x\) The Taylor series expansions around \(x = 0\) are: \[ \cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} - \cdots \] \[ \sin x = x - \frac{x^3}{6} + \frac{x^5}{120} - \cdots \] ### Step 2: Substitute the expansions into the limit Substituting these expansions into the limit expression, we have: \[ 1 + a \cos x - b \sin x = 1 + a\left(1 - \frac{x^2}{2} + \frac{x^4}{24}\right) - b\left(x - \frac{x^3}{6} + \frac{x^5}{120}\right) \] This simplifies to: \[ 1 + a - \frac{ax^2}{2} + \frac{ax^4}{24} - bx + \frac{bx^3}{6} - \frac{bx^5}{120} \] ### Step 3: Multiply by \(x\) and simplify Now, multiplying the entire expression by \(x\): \[ x(1 + a - bx - \frac{ax^2}{2} + \frac{ax^4}{24} + \frac{bx^3}{6}) = x(1 + a) - bx^2 - \frac{ax^3}{2} + \frac{ax^5}{24} + \frac{bx^4}{6} \] ### Step 4: Divide by \(x^3\) Now, we divide the entire expression by \(x^3\): \[ \frac{x(1 + a) - bx^2 - \frac{ax^3}{2} + \frac{ax^5}{24} + \frac{bx^4}{6}}{x^3} = \frac{1 + a}{x^2} - \frac{b}{x} - \frac{a}{2} + \frac{ax^2}{24} + \frac{bx}{6} \] ### Step 5: Analyze the limit as \(x \to 0\) For the limit to equal 1, the coefficients of \(x^{-2}\) and \(x^{-1}\) must be zero: 1. Coefficient of \(x^{-2}\): \(1 + a = 0 \implies a = -1\) 2. Coefficient of \(x^{-1}\): \(-b = 0 \implies b = 0\) ### Step 6: Solve for \(a\) and \(b\) Substituting \(a = -1\) into the second equation gives us: \[ -\frac{-1}{2} + \frac{0}{6} = 1 \implies \frac{1}{2} = 1 \text{ (not true)} \] We need to go back and check the coefficients of \(x^0\) and \(x^1\) for the limit to equal 1. ### Step 7: Set up the equations From the constant term: \[ 1 + a - b = 0 \implies a - b = -1 \quad \text{(1)} \] From the coefficient of \(x^3\): \[ -\frac{a}{2} + \frac{b}{6} = 1 \quad \text{(2)} \] ### Step 8: Solve the system of equations From equation (1): \[ b = a + 1 \] Substituting into equation (2): \[ -\frac{a}{2} + \frac{a + 1}{6} = 1 \] Multiplying through by 6 to eliminate the fractions: \[ -3a + a + 1 = 6 \implies -2a = 5 \implies a = -\frac{5}{2} \] Substituting back to find \(b\): \[ b = -\frac{5}{2} + 1 = -\frac{3}{2} \] ### Step 9: Find \(ab\) Now, we calculate \(ab\): \[ ab = \left(-\frac{5}{2}\right) \left(-\frac{3}{2}\right) = \frac{15}{4} \] Thus, the value of \(ab\) is \[ \boxed{\frac{15}{4}}. \]
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

lim_(x to 0) (1 - cos x)/(x sqrt(x^(2))

lim_(xrarr0) (ax+x cos x)/(b sinx)

lim_(x rarr0)(1/x)^(1-cos x)

lim_(x to 0) (cos 2x-1)/(cos x-1)

If lim_(xto0) ((4x-1)^(1/3)+a+bx)/(x)=1/3 then find the values of a and b.

If lim _(xto0) (a cos x)/(x^2) + (b)/(x ^(2))=1/3, then b-a=

If lim_(x rarr 0) (cos4x+a cos2x+b)/x^4 is finite then the value of a,b respectively

lim_(x to 0) (1 - cos 4x)/(1 - cos x) = _________

If L=lim_(x->0)(e^(-(x^2/2))-cosx)/(x^3 sinx), then the value of 1/(3L) is

If L=lim_(xto0) (e^(-x^(2)//2)-cosx)/(x^(3)sinx) , then the value of 1//(3L) is ________.