Home
Class 12
MATHS
If |sin^(2)x+10x^(2)|=|9-x^(2)|+2sin^(2)...

If `|sin^(2)x+10x^(2)|=|9-x^(2)|+2sin^(2)x+cos^(2)x`, then x lies in

A

`[-8. 8]`

B

`[-3, 3]`

C

`[-sqrt(17), sqrt(17)]`

D

`[-sqrt(21), sqrt(21)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( |\sin^2 x + 10x^2| = |9 - x^2| + 2\sin^2 x + \cos^2 x \), we will follow these steps: ### Step 1: Simplify the Equation Start by using the identity \( \sin^2 x + \cos^2 x = 1 \) to rewrite the equation: \[ |\sin^2 x + 10x^2| = |9 - x^2| + 2\sin^2 x + \cos^2 x \] Substituting \( \cos^2 x = 1 - \sin^2 x \): \[ |\sin^2 x + 10x^2| = |9 - x^2| + 2\sin^2 x + (1 - \sin^2 x) \] This simplifies to: \[ |\sin^2 x + 10x^2| = |9 - x^2| + \sin^2 x + 1 \] ### Step 2: Rearranging the Equation Rearranging gives: \[ |\sin^2 x + 10x^2| - \sin^2 x - 1 = |9 - x^2| \] ### Step 3: Analyze the Absolute Values Now we need to consider the cases for the absolute values. We have two absolute values to analyze: \( |\sin^2 x + 10x^2| \) and \( |9 - x^2| \). 1. **Case 1**: \( \sin^2 x + 10x^2 \geq 0 \) - Then \( |\sin^2 x + 10x^2| = \sin^2 x + 10x^2 \). - The equation becomes: \[ \sin^2 x + 10x^2 - \sin^2 x - 1 = 9 - x^2 \] Simplifying gives: \[ 10x^2 - 1 = 9 - x^2 \] Rearranging leads to: \[ 11x^2 = 10 \implies x^2 = \frac{10}{11} \] 2. **Case 2**: \( \sin^2 x + 10x^2 < 0 \) - Then \( |\sin^2 x + 10x^2| = -(\sin^2 x + 10x^2) \). - The equation becomes: \[ -(\sin^2 x + 10x^2) - \sin^2 x - 1 = 9 - x^2 \] Simplifying gives: \[ -2\sin^2 x - 10x^2 - 1 = 9 - x^2 \] Rearranging leads to: \[ -2\sin^2 x - 9x^2 = 10 \implies 2\sin^2 x + 9x^2 = -10 \] This case will not yield any valid solutions since \( \sin^2 x \) and \( x^2 \) are always non-negative. ### Step 4: Determine Valid Range for \( x \) From the first case, we found \( x^2 = \frac{10}{11} \). We also need to ensure that \( 9 - x^2 \geq 0 \): \[ 9 - x^2 \geq 0 \implies x^2 \leq 9 \implies -3 \leq x \leq 3 \] ### Conclusion Combining the results, we find that \( x \) must satisfy: \[ -\sqrt{9} \leq x \leq \sqrt{9} \implies -3 \leq x \leq 3 \] Thus, the final answer is: \[ \text{The values of } x \text{ lie in } [-3, 3]. \]
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If |sin^2 x + 17 - x ^2| = |16 - x^2| + 2sin^2 x + cos^2 x then subsets of solution are

int(sin^(8)x-cos^(8)x)/(1-2sin^(2)x cos^(2)x)dx

Knowledge Check

  • If 0 le x le (pi)/(2) and sin^(2)x=a and cos^(2)x=b , then sin 2x+cos 2x=

    A
    `2sqrt(ab)+b-a`
    B
    `2ab+a^(2)-b^(2)`
    C
    `2sqrt(ab)+2a-1`
    D
    `2ab+2a-1`
  • Similar Questions

    Explore conceptually related problems

    sqrt(sin 2x) cos 2x

    Solve (sin^(2) 2x+4 sin^(4) x-4 sin^(2) x cos^(2) x)/(4-sin^(2) 2x-4 sin^(2) x)=1/9 .

    If the maximum and minimum values of the determinant |(1 + sin^(2)x,cos^(2) x,sin 2x),(sin^(2) x,1 + cos^(2) x,sin 2x),(sin^(2) x,cos^(2) x,1 + sin 2x)| are alpha and beta , then

    intdx/(4sin^2x+9cos^2x)

    If y=(sin^(4)x-cos^(4)x+sin^(2) x cos^(2)x)/(sin^(4) x+ cos^(4)x + sin^(2) x cos^(2)x), x in (0, pi/2) , then

    The values of x in (0, pi) satisfying the equation. |{:(1+"sin"^(2)x, "sin"^(2)x, "sin"^(2)x), ("cos"^(2)x, 1+"cos"^(2)x, "cos"^(2)x), (4"sin" 2x, 4"sin"2x, 1+4"sin" 2x):}| = 0 , are

    int(sin x cos x)/(a^(2)sin^(2)x+b^(2)cos^(2)x)dx