Home
Class 12
MATHS
what are the truth values of ( ~ p Righ...

what are the truth values of ` ( ~ p Rightarrow ~ q) and ~( ~ p Rightarrow q)` respectively, when p and q always speak true in any argument ?

A

T, T

B

F, F

C

T, F

D

F, T

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the truth values of the expressions \( ( \sim p \Rightarrow \sim q) \) and \( \sim ( \sim p \Rightarrow q) \) given that both \( p \) and \( q \) are always true. ### Step 1: Determine the truth values of \( p \) and \( q \) Since it is given that \( p \) and \( q \) always speak true, we have: - \( p = \text{True} \) - \( q = \text{True} \) ### Step 2: Evaluate \( \sim p \) and \( \sim q \) The negations of \( p \) and \( q \) are: - \( \sim p = \text{False} \) (since \( p \) is True) - \( \sim q = \text{False} \) (since \( q \) is True) ### Step 3: Evaluate the first expression \( ( \sim p \Rightarrow \sim q) \) Using the implication truth table: - The implication \( A \Rightarrow B \) is false only when \( A \) is true and \( B \) is false; otherwise, it is true. Now substituting \( \sim p \) and \( \sim q \): - \( \sim p \Rightarrow \sim q \) becomes \( \text{False} \Rightarrow \text{False} \). According to the truth table: - \( \text{False} \Rightarrow \text{False} = \text{True} \) So, the truth value of the first expression \( ( \sim p \Rightarrow \sim q) \) is **True**. ### Step 4: Evaluate the second expression \( \sim ( \sim p \Rightarrow q) \) First, we need to evaluate \( \sim p \Rightarrow q \): - Substituting the values, we have \( \text{False} \Rightarrow \text{True} \). According to the truth table: - \( \text{False} \Rightarrow \text{True} = \text{True} \) Now we need to negate this result: - \( \sim (\text{True}) = \text{False} \) So, the truth value of the second expression \( \sim ( \sim p \Rightarrow q) \) is **False**. ### Conclusion The truth values of the expressions are: - \( ( \sim p \Rightarrow \sim q) = \text{True} \) - \( \sim ( \sim p \Rightarrow q) = \text{False} \) Thus, the final answer is: - True and False.
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Find the truth values of (i) ~ p to q " " (ii) ~ ( p to q)

Find the truth values of (i) ~p harr q " " (ii) ~ (p harr q)

Find the truth values of (a) ~p to (q to p) " " (b) ( p to q) to (p^^q)

construct truth table for (~p)^^ q

Find the truth values of (i) ~(Pvv~q)" " (ii) ~(~p^^~q)

The contrapositive of statement ~ p Rightarrow ( p ^^ ~ q) is

Construct the truth table for p ^^ q.

Form the truth table of p vv q and pvv~q

The statement p Rightarrow p vv q

Find the truth values of (a) (pharr~q) harr(p to p) " " (b) (p to q) vv~(p harr ~q)