Home
Class 12
MATHS
The value of lim(xrarr(pi)/(2))([(x)/(3)...

The value of `lim_(xrarr(pi)/(2))([(x)/(3)])/(ln(sinx))` (where, `[.]` denotes the greatest integer function)

A

does not exist

B

is equal to 1

C

is equal to 0

D

is equal to `-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \frac{\pi}{2}} \frac{\left\lfloor \frac{x}{3} \right\rfloor}{\ln(\sin x)} \), where \( \left\lfloor . \right\rfloor \) denotes the greatest integer function, we will follow these steps: ### Step 1: Evaluate the numerator First, we need to evaluate the numerator as \( x \) approaches \( \frac{\pi}{2} \): \[ \frac{x}{3} \text{ as } x \to \frac{\pi}{2} \implies \frac{\frac{\pi}{2}}{3} = \frac{\pi}{6} \] Now, we apply the greatest integer function: \[ \left\lfloor \frac{\pi}{6} \right\rfloor \] Since \( \frac{\pi}{6} \approx 0.523 \), the greatest integer less than or equal to \( \frac{\pi}{6} \) is \( 0 \): \[ \left\lfloor \frac{\pi}{6} \right\rfloor = 0 \] ### Step 2: Evaluate the denominator Next, we evaluate the denominator: \[ \ln(\sin x) \text{ as } x \to \frac{\pi}{2} \] We know that: \[ \sin\left(\frac{\pi}{2}\right) = 1 \implies \ln(1) = 0 \] Thus, as \( x \) approaches \( \frac{\pi}{2} \), \( \ln(\sin x) \) approaches \( 0 \). ### Step 3: Combine the results Now we can substitute our results back into the limit: \[ \lim_{x \to \frac{\pi}{2}} \frac{\left\lfloor \frac{x}{3} \right\rfloor}{\ln(\sin x)} = \lim_{x \to \frac{\pi}{2}} \frac{0}{\ln(\sin x)} \] Since the numerator is \( 0 \) and the denominator approaches \( 0 \) (but not exactly \( 0 \)), we have: \[ \frac{0}{\text{something tending to } 0} = 0 \] ### Conclusion Thus, the value of the limit is: \[ \boxed{0} \]
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr(pi)/(2))([(x)/(3)])/(ln(1+cotx)) is equal to (where, [.] denotes the greatest integer function )

lim_(xrarr-7) ([x]^(2)+15[x]+56)/(sin(x+7)sin(x+8))= (where [.] denotes the greatest integer function)

lim_(xrarr(-1)/(3)) (1)/(x)[(-1)/(x)]= (where [.] denotes the greatest integer function)

The value of lim_(x->pi/4)(1+[x])^(1//ln(tanx)) (where[.] denote the greatest integer function) is equal to

The value of lim_(x->pi/4)(1+[x])^(1//ln(tanx)) (where[.] denote the greatest integer function) is equal to

lim_(x-(pi)/(2)) [([sinx]-[cosx]+1)/(3)]= (where [.] denotes the greatest integer integer function)

underset(xto(pi)/(2))(lim)([(x)/(2)])/(log_(e)(sinx))([.] denotes greatest integer function)

lim_(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function)

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

The value of lim_(xto0) ([(100x)/(sinx)]+[(99sinx)/(x)]) (where [.] represents the greatest integral function) is