Home
Class 12
MATHS
The indefinite integral inte^(e^(x))((xe...

The indefinite integral `inte^(e^(x))((xe^(x).lnx+1)/(x))dx` simplifies to (where, c is the constant of integration)

A

`x ln (lnx)+c`

B

`e^(e^(x))+c`

C

`e^(e^(x))/(x)+c`

D

`e^(e^(x)). Ln x+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the indefinite integral \[ I = \int e^{e^x} \left( \frac{x e^x \ln x + 1}{x} \right) dx, \] we can simplify and solve it step by step. ### Step 1: Simplify the Integral We can rewrite the integral as: \[ I = \int e^{e^x} \left( e^x \ln x + \frac{1}{x} \right) dx. \] ### Step 2: Distribute the Integral This can be separated into two integrals: \[ I = \int e^{e^x} e^x \ln x \, dx + \int e^{e^x} \frac{1}{x} \, dx. \] ### Step 3: Recognize the Structure Let’s denote: - \( u = e^x \) so that \( du = e^x \, dx \). - The first integral becomes: \[ \int e^{u} \ln(\ln u) \, du. \] ### Step 4: Apply Integration by Parts For the first integral, we can use integration by parts. Let: - \( v = \ln(\ln u) \) and \( dv = \frac{1}{\ln u} \cdot \frac{1}{u} \, du \). - \( dw = e^u \, du \) and \( w = e^u \). Using integration by parts: \[ \int v \, dw = vw - \int w \, dv. \] ### Step 5: Substitute and Simplify After applying integration by parts, we get: \[ I = e^{e^x} \ln(\ln(e^x)) - \int e^{e^x} \cdot \frac{1}{\ln(e^x)} \cdot \frac{1}{e^x} \, dx + C. \] ### Step 6: Combine Results The second integral simplifies to: \[ \int e^{e^x} \frac{1}{x} \, dx. \] Combining both parts gives us: \[ I = e^{e^x} \ln x + C. \] ### Final Result Thus, the indefinite integral simplifies to: \[ I = e^{e^x} \ln x + C. \] ### Conclusion The correct answer is: \[ \text{Option D: } e^{e^x} \ln x + C. \]
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

The integral I=int((1)/(x.secx)-ln(x^(sinx))dx simplifies to (where, c is the constant of integration)

The integral I=int(e^((e^sinx+sinx)))cos x dx simpllifies to (where, c is the constant of integration)

The value of the integral inte^(x^(2)+(1)/(x))(2x^(2)-(1)/(x)+1)dx is equal to (where C is the constant of integration)

The value of the integral I=int(2x^(9)+x^(10))/((x^(2)+x^(3))^(3))dx is equal to (where, C is the constant of integration)

The integral int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx is equal to (where C is a constant of integration)

If f(x)=sinx, g(x)=cosx and h(x)=cos(cosx), then the integral I=int f(g(x)).f(x).h(x)dx simplifies to -lambda sin^(2)(cosx)+C (where, C is the constant of integration). The value of lambda is equal to

The value of int(1)/((2x-1)sqrt(x^(2)-x))dx is equal to (where c is the constant of integration)

The value of the integral int("cosec"^(2)x-2019)/(cos^(2019)x)dx is equal to (where C is the constant of integration)

The value of int((x-4))/(x^2sqrt(x-2)) dx is equal to (where , C is the constant of integration )

The value of int(e^(sqrtx))/(sqrtx(1+e^(2sqrtx)))dx is equal to (where, C is the constant of integration)