Home
Class 12
MATHS
In the triangle ABC, vertices A, B, C ar...

In the triangle ABC, vertices A, B, C are `(1, 2), (3, 1), (-1, 6)` respectively. If the internal angle bisector of `angleBAC` meets BC at D, then the coordinates of D are `((5)/(3),(8)/(3))`

A

`(1, (7)/(2))`

B

`((1)/(3),(13)/(3))`

C

`(2, (3)/(4))`

D

`(2, (3)/(4))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the coordinates of point D, where the internal angle bisector of angle BAC meets side BC in triangle ABC with vertices A(1, 2), B(3, 1), and C(-1, 6), we can use the Angle Bisector Theorem and the Section Formula. ### Step-by-Step Solution: 1. **Identify the Vertices**: - A(1, 2) - B(3, 1) - C(-1, 6) 2. **Calculate the Lengths of Sides AB and AC**: - Using the distance formula: \[ AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(3 - 1)^2 + (1 - 2)^2} = \sqrt{2^2 + (-1)^2} = \sqrt{4 + 1} = \sqrt{5} \] - For AC: \[ AC = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(-1 - 1)^2 + (6 - 2)^2} = \sqrt{(-2)^2 + 4^2} = \sqrt{4 + 16} = \sqrt{20} = 2\sqrt{5} \] 3. **Find the Ratio of AB to AC**: - The ratio \( \frac{AB}{AC} = \frac{\sqrt{5}}{2\sqrt{5}} = \frac{1}{2} \). - By the Angle Bisector Theorem, this means \( \frac{BD}{DC} = \frac{1}{2} \). 4. **Apply the Section Formula**: - Let D divide BC in the ratio 1:2. The coordinates of D can be found using the section formula: \[ D\left(\frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n}\right) \] - Here, \( m = 1 \), \( n = 2 \), \( B(3, 1) \), and \( C(-1, 6) \). 5. **Calculate the Coordinates of D**: - For the x-coordinate: \[ x_D = \frac{1 \cdot (-1) + 2 \cdot 3}{1 + 2} = \frac{-1 + 6}{3} = \frac{5}{3} \] - For the y-coordinate: \[ y_D = \frac{1 \cdot 6 + 2 \cdot 1}{1 + 2} = \frac{6 + 2}{3} = \frac{8}{3} \] 6. **Final Coordinates of D**: - Therefore, the coordinates of D are \( D\left(\frac{5}{3}, \frac{8}{3}\right) \).
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

The vertices f the triangle are A(5,4,6),\ B(1,-1,3)n a d\ C(4,3,2)dot The internal bisector of angle A meets BC at D. Find the coordinates of D and the length AD.

A (3,2,0) , B (5,3,2)C (-9,6,-3) are three points forming a triangle. AD, the bisector of angle BAC meets BC in D. Find the coordinates of the point D.

The vertices of a triangle are A(-1,-7),B(5,1)a n dC(1,4)dot If the internal angle bisector of /_B meets the side A C in D , then find the length A Ddot

The vertices of a triangle are A(-1,-7),B(5,1)a n dC(1,4)dot If the internal angle bisector of /_B meets the side A C in D , then find the length A Ddot

The vertices of a triangle are A(-1,-7),B(5,1)a n dC(1,4)dot If the internal angle bisector of /_B meets the side A C in D , then find the length A Ddot

If A ( 2,2,-3) B ( 5,6,9) ,C (2,7,9) be the vertices of a triangle. The internal bisector of the angle A meets BC at the point D, then find the coordinates of D.

Let A(3,2,0),\ B(5,3,2),\ C(-9,6,-3) be three points forming a triangle. The bisector A D\ of\ /_B A C meets sides in D. Find the coordinates of D.

If A (1, 5), B (-2, 1) and C (4, 1) be the vertices of DeltaABC and internal bisector of /_A meets BC at D , find AD .

In a triangle ABC the sides BC=5, CA=4 and AB=3 . If A(0,0) and the internal bisector of angle A meets BC in D (12/7,12/7) then incenter of triangle ABC is

A(1,2,3),B(0,4,1),C(-1,-1,-3) are vertices of triangle ABC, find the point at which the bisector of angleBAC meets BC.