Home
Class 12
PHYSICS
Energy per unit volume represents...

Energy per unit volume represents

A

Pressure

B

Force

C

Thrust

D

Work

Text Solution

AI Generated Solution

The correct Answer is:
To solve the question "Energy per unit volume represents," we need to analyze the concept of energy density. Here’s a step-by-step breakdown: ### Step 1: Understand the Concept of Energy Energy is defined as the capacity to do work. In physics, work done (W) can be expressed as the product of force (F) and displacement (dx). ### Step 2: Define Energy Density Energy per unit volume is known as energy density. It is a measure of how much energy is stored in a given volume of space. ### Step 3: Mathematical Representation Energy density (u) can be mathematically represented as: \[ u = \frac{E}{V} \] where: - \( u \) = energy density - \( E \) = total energy - \( V \) = volume ### Step 4: Identify the Correct Option In the context of the question, energy per unit volume can represent various physical quantities depending on the context (like electric field energy density, magnetic field energy density, etc.). However, in general physics terms, it is commonly referred to as energy density. ### Conclusion Thus, the correct answer to the question "Energy per unit volume represents" is **Energy Density**. ---
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Two wires having same length and material are stretched by same force. Their diameters are in the ratio 1:3. The ratio of strain energy per unit volume for these two wires (smaller to larger diameter) when stretched is

KE per unit volume is:

The Young's modulus of a wire Y. If the energy per unit volume is E, then the strain will be

The elastic energy per unit volume is terms of longitudinal strain sigma and Young's modulus Y is

For an ideal gas, pressure (p) and interal energy (E ) per unit volume are related as

Derive the expression for the magnetic energy stored in a solenoid in terms of magnetic field B, area A and length l of the solenoid carrying a steady current 1. How does this magnetic energy per unit volume compare with the electrostatic energy density stored in a parallel plate capacitor ?

A monoatomic gas at a temperature T has pressure P and heat energy per unit volume E. then

The stored energy per unit volume of a stretched wire is

Show dimensionally that the pressure is given by (i) energy per unit volume (ii) force per unit area.

In the formula p = 2/3 E , the term (E) represents translational kinetic energy per unit volume of gas. In case of monoatomic gas, translational kinetic energy and total kinetic energy are equal.