Home
Class 12
MATHS
Let f(x)=x^(105)+x^(53)+x^(27)+x^(13)+x^...

Let `f(x)=x^(105)+x^(53)+x^(27)+x^(13)+x^3+3x+1.` If `g(x)` is inverse of function `f(x),` then the value of `g^(prime)(1)` is (a)3 (b) `1/3` (c) `-1/3` (d) not defined

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    RESONANCE DPP ENGLISH|Exercise All Questions|4 Videos

Similar Questions

Explore conceptually related problems

If f(x)=x^(3)+3x+1 and g(x) is the inverse function of f(x), then the value of g'(5) is equal to

Let f(x)=-4.sqrt(e^(1-x))+1+x+(x^(2))/(2)+(x^(3))/(3) . If g(x) is inverse of f(x) then the value of (1)/(g^(')(-(7)/(6))) is

If g is inverse of f(x) = x^3 + x + cosx , then find the value of g'(1)

Consider the function f(x)=tan^(-1){(3x-2)/(3+2x)}, AA x ge 0. If g(x) is the inverse function of f(x) , then the value of g'((pi)/(4)) is equal to

If f(x)=x^(3)+3x+4 and g is the inverse function of f(x), then the value of (d)/(dx)((g(x))/(g(g(x)))) at x = 4 equals

If g is the inverse of f and f'(x)=1/(1+x^n) , prove that g^(prime)(x)=1+(g(x))^n

If f(x)=x^3+2x^2+3x+4 and g(x) is the inverse of f(x) then g^(prime)(4) is equal to- 1/4 (b) 0 (c) 1/3 (d) 4

If f(x)=x^3+2x^2+3x+4 and g(x) is the inverse of f(x) then g^(prime)(4) is equal to- 1/4 (b) 0 (c) 1/3 (d) 4

Let f(x)=int_(0)^(x)(dt)/(sqrt(1+t^(3))) and g(x) be the inverse of f(x) . Then the value of 4 (g''(x))/(g(x)^(2)) is________.

Let f(x)=x^(3)+x+1 and let g(x) be its inverse function then equation of the tangent to y=g(x) at x = 3 is