Home
Class 12
MATHS
In any triangle ABC, if A=tan^(-1) 2 and...

In any triangle ABC, if `A=tan^(-1) 2 and B = tan^(-1) 3`. Prove that `C= pi/4`.

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If tan^(-1) a+tan^(-1) b +tan^(-1)c=pi , prove that a+b+c=abc.

Statement I In a triangle ABC if tan A: tan B: tan C=1 :2:3, then A=45^(@) Statement II If p:q:r=1:2:3, then p=1

In a triangle ABC if sin A cos B = 1/4 and 3 tan A = tan B , then the triangle is

If in a triangle ABC, b + c = 3a, then tan (B/2)tan(C/2) is equal to

In triangle A B C ,tan(A-B)+tan(B-C)+"tan"(C-A=0. Prove that the triangle isisoceles.

Prove that tan ^(-1). 3/4+ tan^(-1) . 3/5 - tan^(-1) . 8/19 = pi/4

If tan^(-1)a+tan^(-1)b+tan^(-1)c=pi then prove tjhat a+b+c=abc

In a triangle ABC if tan.(A)/(2)tan.(B)/(2)=(1)/(3) and ab = 4, then the value of c can be

Prove that 4 tan^(-1) . 1/5 - tan^(-1) . 1/70 + tan^(-1) . 1/99 = pi/4

In any triangle ABC, if sin A , sin B, sin C are in AP, then the maximum value of tan ""B/2 is