Home
Class 12
MATHS
In an acute triangle A B C if sides a , ...

In an acute triangle `A B C` if sides `a , b` are constants and the base angles `Aa n dB` vary, then show that `(d A)/(sqrt(a^2-b^2sin^2A))=(d B)/(sqrt(b^2-a^2sin^2B))`

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle, if the angles A , B ,a n dC are in A.P. show that 2cos1/2(A-C)=(a+c)/(sqrt(a^2-a c+c^2))

In A B C ,s i d e sb , c and angle B are given such that a has two valus a_1a n da_2dot Then prove that |a_1-a_2|=2sqrt(b^2-c^2sin^2B)

In any triangle ABC ,c^2 sin 2 B + b^2 sin 2 C is equal to

If A , B and C are interior angles of triangle ABC ,then show that sin ((B+C)/( 2) )=cos (A) /(2)

Prove that (sin (A-B))/(sin (A+B))=(a^(2)-b^(2))/(c^(2))

Show that cos[(B-C)/2]=(b+c)/a sin(A/2)

In triangle ABC if 2sin^(2)C=2+cos2A+cos2B , then prove that triangle is right angled.

If a cos theta - b sin theta = c, show that a sin theta + b cos theta = pm sqrt(a^(2) + b^(2) - c^(2))