Home
Class 12
MATHS
In a trapezium, vector vec B C=alpha ve...

In a trapezium, vector ` vec B C=alpha vec A Ddot` We will then find that ` vec p= vec A C+ vec B D` is collinear with` vec A Ddot` If ` vec p=mu vec A D ,` then which of the following is true? a) `mu=alpha+2` b) `mu+alpha=2` c) `alpha=mu+1` d) `mu=alpha+1`

Answer

Step by step text solution for In a trapezium, vector vec B C=alpha vec A Ddot We will then find that vec p= vec A C+ vec B D is collinear with vec A Ddot If vec p=mu vec A D , then which of the following is true? a) mu=alpha+2 b) mu+alpha=2 c) alpha=mu+1 d) mu=alpha+1 by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If [ vec a vec b vec c]=2, then find the value of [( vec a+2 vec b- vec c)( vec a- vec b)( vec a- vec b- vec c)]dot

Show that the vectors vec a, vec b and vec c are coplanar if vec a + vec b, vec b + vec c, vec c+ vec a are coplanar.

Given that vec adot vec b= vec adot vec c , vec axx vec b= vec axx vec ca n d vec a is not a zero vector. Show that vec b= vec cdot

Prove that [ vec a, vec b, vec c + vec d] = [ vec a, vec b, vec c] + [ vec a, vec b , vec d] .

If three unit vectors vec a , vec b ,a n d vec c satisfy vec a+ vec b+ vec c=0, then find the angle between vec aa n d vec bdot

A , B , C , D are any four points, prove that vec A B dot vec C D+ vec B Cdot vec A D+ vec C Adot vec B D=0.

If | vec a|+| vec b|=| vec c|a n d vec a+ vec b= vec c , then find the angle between vec aa n d vec bdot

If vec a , vec ba n d vec c are three non-zero vectors, no two of which ar collinear, vec a+2 vec b is collinear with vec c and vec b+3 vec c is collinear with vec a , then find the value of | vec a+2 vec b+6 vec c|dot

A B C D E is pentagon, prove that vec A B + vec B C + vec C D + vec D E+ vec E A = vec0 vec A B+ vec A E+ vec B C+ vec D C+ vec E D+ vec A C=3 vec A C

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=0