Home
Class 12
MATHS
A sample space consists of 3 sample poin...

A sample space consists of 3 sample points with associated probabilities given as `2p ,p^2,4p-1.` Then the value of `p` is

A

`p = sqrt(11) - 3`

B

`sqrt(10) - 3`

C

`(1)/(4)lt p lt (1)/(2)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A

`P^(2) + 2p + 4p - 1 = 1` (Exhaustive)
`P^(2) + 6p - 2 = 0`
or `p = - 3 pm sqrt(11)`
`= sqrt(11) - 3`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROBABILITY I

    CENGAGE|Exercise Exercise (Multiple)|8 Videos
  • PROBABILITY I

    CENGAGE|Exercise Exercise (Comprehension)|14 Videos
  • PROBABILITY I

    CENGAGE|Exercise Exercise 9.3|7 Videos
  • PROBABILITY AND STATISTICS

    CENGAGE|Exercise Question Bank|24 Videos
  • PROBABILITY II

    CENGAGE|Exercise JEE Advanced Previous Year|25 Videos

Similar Questions

Explore conceptually related problems

Find the LCM of the given polynomials. p^(2)-3p+2,p^(2)-4

Let S and T are two events defined on a sample space with probabilities P(S)=0.5,P(T)=0.69,P(S//T)=0.5 The value of P(S and T) is

Two players P_1 , and P_2 , are playing the final of a chase championship, which consists of a series of match Probability of P_1 , winning a match is 2/3 and that of P_2 is 1/3. The winner will be the one who is ahead by 2 games as compared to the other player and wins at least 6 games. Now, if the player P_2 , wins the first four matches find the probability of P_1 , wining the championship.

If the probability that the product of the outcomes of three rolls of a fair dice is a prime number is p , then the value of 1//(4p) is_____.

Let P denotes the plane consisting of all points that are equidistant from the points A(-4,2,1) and B(2,-4,3) and Q be the plane, x-y+cz=1 where c in R . If the angle between the planes P and Q is 45^(@) then the product of all possible values of c is

A sample space consists of 9 elementary outcomes outcomes E_(1), E_(2) ,…, E_(9) whose probabilities are: P(E_(1))=P(E_(2)) = 0.09, P(E_(3))=P(E_(4))=P(E_(5))=0.1 P(E_(6)) = P(E_(7)) = 0.2, P(E_(8)) = P(E_(9)) = 0.06 If A = {E_(1), E_(5), E_(8)}, B= {E_(2), E_(5), E_(8), E_(9)} then (a) Calculate P(A), P(B), and P(A nn B). (b) Using the addition law of probability, calculate P(A uu B) . (c ) List the composition of the event A uu B , and calculate P(A uu B) by adding the probabilities of the elementary outcomes. (d) Calculate P(barB) from P(B), also calculate P(barB) directly from the elementarty outcomes of B.

two samples 1 and 2 are initially kept in the same state. the sample 1 is expanded through an isothermal process where as sample 2 through an adiabatic process up to the same final volume.Let p_(1) and p_(2) be the final pressure of the samples and 2 respectively in the previous question then.

If A and B are exhaustive events in a sample space such that probabilites of the events AnnB , A , B and AuuB are in A.P. If P(A)=K , where 0 lt K le 1 , then

If the mid-point (x,y) of the line joining (3,4) and (p,7) lies on 2x+2y+1=0 , then what will be the value of p?

Let A be a point inside a regular polygon of 10 sides. Let p_(1), p_(2)...., p_(10) be the distances of A from the sides of the polygon. If each side is of length 2 units, then find the value of p_(1) + p_(2) + ...+ p_(10)