Home
Class 12
MATHS
If the tangents at the points Pa n dQ on...

If the tangents at the points `Pa n dQ` on the parabola `y^2=4a x` meet at `T ,a n dS` is its focus, the prove that `S P ,S T ,a n dS Q` are in GP.

Text Solution

Verified by Experts

The correct Answer is:
-0.5

Tangents to parabola `y^(2)=4axP(at_(1)^(2),2at_(1))andQ(at_(2)^(2),2at_(2))` meet at `T(at_(1)t_(2),a(t_(1)+t_(2)))`.
Now, `SP=a+at_(1)^(2)andSQ=a+at_(2)^(2)`
`:." "(ST)^(2)=(at_(1)t_(2)-a)^(2)+(a(t_(1)+t_(2)))^(2)`
`=a^(2)(1+t_(1)^(2))(1+t_(2)^(2))`
`=SPxxSQ`
Hence, SP, ST and SQ are in G.P.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PARABOLA

    CENGAGE|Exercise Exercise 5.6|8 Videos
  • PARABOLA

    CENGAGE|Exercise Exercise 5.7|9 Videos
  • PARABOLA

    CENGAGE|Exercise Exercise 5.4|13 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE|Exercise Exercise (Numerical)|5 Videos
  • PERMUTATION AND COMBINATION

    CENGAGE|Exercise Question Bank|4 Videos

Similar Questions

Explore conceptually related problems

The tangents to the parabola y^2=4a x at the vertex V and any point P meet at Q . If S is the focus, then prove that S P,S Q , and S V are in GP.

If the normals at P, Q, R of the parabola y^2=4ax meet in O and S be its focus, then prove that .SP . SQ . SR = a . (SO)^2 .

If the tangent at the point P(2,4) to the parabola y^2=8x meets the parabola y^2=8x+5 at Qa n dR , then find the midpoint of chord Q Rdot

if the normal at the point t_(1) on the parabola y^(2) = 4ax meets the parabola again in the point t_(2) then prove that t_(2) = - ( t_(1) + 2/t_(1))

Two mutually perpendicular tangents of the parabola y^2=4a x meet the axis at P_1a n dP_2 . If S is the focus of the parabola, then 1/(S P_1) is equal to 4/a (b) 2/1 (c) 1/a (d) 1/(4a)

If the normal to the parabola y^2=4a x at point t_1 cuts the parabola again at point t_2 , then prove that t_2 2geq8.

If the normals to the parabola y^2=4a x at three points P ,Q ,a n dR meet at A ,a n dS is the focus, then S PdotS qdotS R is equal to a^2S A (b) S A^3 (c) a S A^2 (d) none of these

The tangent at any point P onthe parabola y^2=4a x intersects the y-axis at Qdot Then tangent to the circumcircle of triangle P Q S(S is the focus) at Q is

If a tangent to the parabola y^2=4a x meets the x-axis at T and intersects the tangents at vertex A at P , and rectangle T A P Q is completed, then find the locus of point Qdot

Prove that the length of the intercept on the normal at the point P(a t^2,2a t) of the parabola y^2=4a x made by the circle described on the line joining the focus and P as diameter is asqrt(1+t^2) .