Prove that `^n C_0 ^(2n)C_n- ^n C_1 ^(2n-2)C_n+ ^n C_2^(2n-4)C_n-=2^ndot`
A
`((n),(m-n))2^(2n-m)` if ` m ge n`
B
`0` if `m lt n`
C
`((n),(m-n))2^(2n+m)` if ` m ge n`
D
`1` if `m lt n`
Text Solution
Verified by Experts
The correct Answer is:
A, B
`(a,b)` The given series can be written as `S=sum_(r=0)^(n)'^(n)C_(r )^(2n-2)C_(m)(-1)^(r )` `=sum_(r=0)^(n)'^(n)C_(r )(-1)^(r )xx"coefficient of" x^(m) "in" (1+x)^(2n-2r)` `="coefficient of" x^(m) "in" sum_(r=0^(n)'^(n)C_(r )(-1)^(r )[(1+x)^(2)]^(n-r)` `="coefficient of" x^(m) "in" (x^(2)+2x)^(n)` `="coefficient of" x^(m) "in" x^(n) (x+2)^(n)` `="coefficient of" x^(m-n) "in" (x+2)^(n)` `=^(n)C_(m-n)2^(n-(m-n))=((n),(m-n))2^(2n-m)` if `m ge n` and `0` if `m lt n`.
Topper's Solved these Questions
BINOMIAL THEOREM
CENGAGE|Exercise Comprehension|11 Videos
BINOMIAL THEOREM
CENGAGE|Exercise Single correct Answer|62 Videos
AREA UNDER CURVES
CENGAGE|Exercise Question Bank|10 Videos
CIRCLE
CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos
Similar Questions
Explore conceptually related problems
Prove that "^n C_0^(2n)C_n-^n C_1^(2n-1)C_n+^n C_2xx^(2n-2)C_n++(-1)^n^n C_n^n C_n=1.
Prove that ^n C_0^n C_0-^(n+1)C_1^n C_1+^(n+2)C_2^n C_2-=(-1)^ndot
If (18 x^2+12 x+4)^n=a_0+a_(1x)+a2x2++a_(2n)x^(2n), prove that a_r=2^n3^r(^(2n)C_r+^n C_1^(2n-2)C_r+^n C_2^(2n-4)C_r+) .
Prove that ^m C_1^n C_m-^m C_2^(2n)C_m+^m C_3^(3n)C_m-=(-1)^(m-1)n^mdot
Prove that n C_0+^n C_3+^n C_6+=1/3(2^n+2cos(npi)/3) .
Using binomial theorem (without using the formula for ^n C_r ) , prove that "^n C_4+^m C_2-^m C_1^n C_2 = ^m C_4-^(m+n)C_1^m C_3+^(m+n)C_2^m C_2-^(m+n)C_3^m C_1+^ (m+n)C_4dot
Prove that .^(n)C_(1) + 2 .^(n)C_(2) + 3 .^(n)C_(3) + "…." + n . ^(n)C_(n) = n 2^(n-1) .
Prove that C_(0)^(2) + C_(1)^(2) + C_(2)^(2) +…+C_(n)^(2) = (2n!)/(n!)^(2)