Home
Class 12
MATHS
consider the fourth -degree polynomial e...

consider the fourth -degree polynomial equation
`|{:(a_(1)+b_(1)x,,a_(1)x^(2)+b_(1),,c_(1)),(a_(2)+b_(2)x^(2),,a_(2)x^(2)+b_(2),,c_(2)),(a_(3)+b_(3)x^(2),,a_(3)x^(2)+b_(3),,c_(3)):}|=0`
Without expanding the determinant find all the roots of the equation.

A

`x=1`

B

`x=-1`

C

`|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=0`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A, B, C

`(a,b,c)` `|{:(a_(1)+b_(1)x,a_(1)x+b_(1),c_(1)),(a_(2)+b_(2)x,a_(2)x+b_(2),c_(2)),(a_(3)+b_(3)x,a_(3)x+b_(3),c_(3)):}|=0`
`impliesunderset(D_(1))(|{:(a_(1),a_(1)x+b_(1),c_(1)),(a_(2),a_(2)x+b_(2),c_(2)),(a_(3),a_(3)x+b_(3),c_(3)):}|)+underset(D_(2))(|{:(b_(1)x,a_(1)x+b_(1),c_(1)),(b_(2)x,a_(2)x+b_(2),c_(2)),(b_(3)x,a_(3)x+b_(3),c_(3)):}|)=0`
Applying `C_(2)toC_(2)-xC_(1)` in `D_(1)` and taking `x` common from `C_(1)` in `D_(2)`.
`implies|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|+x|{:(b_(1),a_(1)x+b_(1),c_(1)),(b_(2),a_(2)x+b_(2),c_(2)),(b_(3),a_(3)x+b_(3),c_(3)):}|=0`
Applying `C_(2)toC_(2)-C_(1)` and then taking `x` common from `C_(2)` in `D_(2)`
`implies|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|+x^(2)|{:(b_(1),a_(1),c_(1)),(b_(2),a_(2),c_(2)),(b_(3),a_(3),c_(3)):}|=0`
`implies(1-x^(2))|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=0`
`impliesx=+-1`, or `|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=0`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE|Exercise Comprehension|2 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|38 Videos
  • DETERMINANTS

    CENGAGE|Exercise All Questions|268 Videos

Similar Questions

Explore conceptually related problems

Prove that the value of each the following determinants zero: (a)|{:(a_(1),,la_(1)+mb_(1),,b_(1)),(a_(2),,la_(2)+mb_(2),,b_(2)),( a_(3),,la_(3)+mb_(3),,b_(3)):}|

if w is a complex cube root to unity then value of Delta =|{:(a_(1)+b_(1)w,,a_(1)w^(2)+b_(1),,c_(1)+b_(1)bar(w)),(a_(2)+b_(2)w,,a_(2)w^(2)+b_(2),,c_(2)+b_(2)bar(w)),(a_(3)+b_(3)w,,a_(3)w^(2)+b_(3),,c_(3)+b_(3)bar(w)):}| is

Knowledge Check

  • Let A= |(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3)c_(3))| then the cofactor of a_(31) is:

    A
    `b_(1)c_(2)+b_(2)c_(1)`
    B
    `b_(1)b_(2)-c_(1)c_(2)`
    C
    `b_(1)c_(2)-b_(2)c_(1)`
    D
    `b_(2)c_(1)-b_(1)c_(2)`
  • If A+iB=(a_(1)+ib_(1))(a_(2)+ib_(2))(a_(3)+ib_(3)) then A^(2)+B^(2) is :

    A
    `a_(1)^(2)+a_(2)^(2)+a_(3)^(2)+b_(1)^(2)+b_(2)^(2)+b_(3)^(2)`
    B
    `(a_(1)+a_(2)+a_(3))^(2)+(b_(1)+b_(2)+b_(3))^(2)`
    C
    `(a_(1)^(2)+b_(1)^(2))(a_(2)^(2)+b_(2)^(2))(a_(3)^(2)+b_(3)^(2))`
    D
    `(a_(1)^(2)+a_(2)^(2)+a_(3)^(2))+(b_(1)^(2)+b_(2)^(2)+b_(3)^(2))`
  • If A = [(3,1,-1),(2,-2,0),(1,2-1)] and A^(-1) =[(a_(1),a_(12),a_(13)),(a_(21),a_(22),a_(23)),(a_(31),a_(32),a_(33))]

    A
    0
    B
    `-2`
    C
    `-3`
    D
    `-1`
  • Similar Questions

    Explore conceptually related problems

    If |(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))| is 8 the value of |2(a_(1),2b_(1),2c_(1)),(2a_(2),2b_(2),2c_(2)),(2a_(3),2b_(3),2c_(3))|

    If (x+1/x+1)^(6)=a_(0)+(a_(1)x+(b_(i))/(x))+(a_(2)x^(2)+(b_(2))/(x^(2)))+"...."+(a_(6)x^(6)+(b_(6))/(x^(6))) , then

    If a_(1)=1, a_(2)=1 and a_(n)=2a_(n-1)+a_(n-2), nge3, ninN , then find the first six terms of the sequence.

    the value of the determinant |{:((a_(1)-b_(1))^(2),,(a_(1)-b_(2))^(2),,(a_(1)-b_(3))^(2),,(a_(1)-b_(4))^(2)),((a_(2)-b_(1))^(2),,(a_(2)-b_(2))^(2) ,,(a_(2)-b_(3))^(2),,(a_(3)-b_(4))^(2)),((a_(3)-b_(1))^(2),,(a_(3)-b_(2))^(2),,(a_(3)-b_(3))^(2),,(a_(3)-b_(4))^(2)),((a_(4)-b_(1))^(2),,(a_(4)-b_(2))^(2),,(a_(4)-b_(3))^(2),,(a_(4)-b_(4))^(2)):}| is

    If (a_(1))/(a_(2))= (b_(1))/(b_(2)) ne (c_(1))/(c_(2)) where a_(1)x + b_(1)y+ c_(1)= 0 and a_(2) x+ b_(2)y + c_(2)=0 then the given pair of linear equation has __________ solution(s)