Home
Class 12
MATHS
Find the equations of the tangents drawn...

Find the equations of the tangents drawn from the point (2, 3) to the ellipse `9x^2+16 y^2=144.`

Text Solution

Verified by Experts

Given ellipse is `(x^(2))/(16)+(y^(2))/(9)=1`
Let the equation of tangent by `y=mx+sqrt(16m^(2)+9)`
It passes through the point (2,3) .
`:. 3=2m+sqrt(16m^(2)+9)`
`rArr (3-2m)^(2)=16m^(2)+9`
`rArr12m^(2)+12m=0`
`rArrm=0,-1`
Therefore, equation of tangents are
`y-3=-1(x-2) and y-3=0`
`o y=-x+5 and y=3`
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Find the equation of the tangents from the point (2,-3) to the parabola y^(2)=4x

Find the equations of the tangents from the point (2,-3) to the parabola y^(2)=4x .

Find the equation of the two tangents from the point (1,2) to the hyperbola 2x^(2)-3y^2=6

Find the equations of the two tangents that can be drawn from (5,2) to the ellispse 2x^(2) + 7y^(2) =14

Find the equation of pair of tangents drawn from point (4, 3) to the hyperbola (x^(2))/(16)-(y^(2))/(9)=1 . Also, find the angle between the tangents.

Find the equations of the two tangents that can be drawn from (5,2) the ellipse 2x ^(2) + 7y ^(2) = 14.

Find the angle between the pair of tangents from the point (1,2) to the ellipse 3x^2+2y^2=5.

Find the equations of the tangents drawn to the curve y^2-2x^3-4y+8=0.

Statement 1 : The equations of the tangents drawn at the ends of the major axis of the ellipse 9x^2+5y^2-30 y=0 is y=0,y=6 . Statement 2 : The tangents drawn at the ends of the major axis of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 are always parallel to the y-axis.

Find the area of the triangle formed by the tangents from the point (4, 3) to the circle x^2+y^2=9 and the line joining their points of contact.