Home
Class 12
MATHS
Consider the cubic equation x^(3)-(1+ co...

Consider the cubic equation `x^(3)-(1+ cos theta+sin theta)x^(2)+(cos theta sin theta +cos theta + sin theta) x- sin theta cos theta=0` whose roots are `x_(1), x_(2)` and `x_(3)`.
The greatest possible difference between two of the roots if `theta in [0, 2pi]` is

A

1

B

2

C

`2 cos theta`

D

`sin theta (sin theta+ cos theta)`

Text Solution

Verified by Experts

The correct Answer is:
B

`x^(3)-(1+cos theta + sin theta) x^(2) +(cos theta sin theta + cos theta + sin theta)x-sin theta cos theta=0`
Given cubic function is
`f(x)=(x-1)(x-cos theta) (x- sin theta)`
Therefore, roots are `1, sin theta`, and `cos theta`.
Hence, `x_(1)^(2)+x_(2)^(2)+x_(3)^(2)=1+sin^(2) theta+cos^(2) theta=2`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercises (Matrix Match Type)|6 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise (Numerical)|21 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise (Multiple)|31 Videos
  • TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS

    CENGAGE|Exercise Question Bank|4 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

determinant |"cos theta sin theta -sin theta cos theta

If cos theta+sin theta=sqrt2 cos theta, show that cos theta-sin theta=sqrt2 sin theta .

Knowledge Check

  • If sin theta + cos theta theta = sqrt(2) cos theta then cos theta - sin theta is

    A
    `sqrt(2) cos theta`
    B
    `sqrt(2) sin theta `
    C
    `+- sqrt(2) sin theta `
    D
    `sqrt(2) ( cos theta + sin theta)`
  • The inverse of A=[[cos theta, sin theta],[-sin theta,cos theta]] is :

    A
    A
    B
    `-A`
    C
    `A^(T)`
    D
    `-A^(T)`
  • Similar Questions

    Explore conceptually related problems

    Evaluate : |(cos theta, sin theta),(-sin theta,cos theta)|

    Solve sin 2 theta+cos theta=0 .

    If cos theta+sin theta=sqrt(2)cos theta then prove that cos theta-sin theta=sqrt(2)sin theta

    Solve sqrt(3) cos theta-3 sin theta =4 sin 2 theta cos 3 theta .

    Solve : 3-2 cos theta -4 sin theta - cos 2theta+sin 2theta=0 .

    Solve the equations: sin 2theta - cos 2 theta - sin theta + cos theta = 0